K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017

a) Tập xác định : R ; y' =-4x3 + 16x = -4x(x2 - 4);

y' = 0 ⇔ x = 0, x = ±2 .

Bảng biến thiên :

Đồ thị như hình bên.

b) Tập xác định : R ; y' =4x3 - 4x = 4x(x2 - 1);

y' = 0 ⇔ x = 0, x = ±1 .

Bảng biến thiên :

Đồ thị như hình bên.

c) Tập xác định : R ; y' =2x3 + 2x = 2x(x2 + 1); y' = 0 ⇔ x = 0.

Bảng biến thiên :

Đồ thị như hình bên.

d) Tập xác định : R ; y' = -4x - 4x3 = -4x(1 + x2); y' = 0 ⇔ x = 0.

Bảng biến thiên :

Đồ thị như hình bên.

.

19 tháng 9 2020

bn lm dài thế chi tiết nx mn tick cho bn này nè mk hok r nên bt

31 tháng 3 2017

a) Tập xác định : R\ {1}; y′=−4(x−1)2<0,∀x≠1y′=−4(x−1)2<0,∀x≠1 ;

Tiệm cận đứng : x = 1 . Tiệm cận ngang : y = 1.

Bảng biến thiên :

Đồ thị như hình bên.

b) Tập xác định : R \{2}; y′=6(2x−4)2>0,∀x≠2y′=6(2x−4)2>0,∀x≠2

Tiệm cận đứng : x = 2 . Tiệm cận ngang : y = -1.

Bảng biến thiên :

Đồ thị như hình bên.

c) Tập xác định : R∖{−12}R∖{−12}; y′=−5(2x+1)2<0,∀x≠−12y′=−5(2x+1)2<0,∀x≠−12

Tiệm cận đứng : x=−12x=−12 . Tiệm cận ngang : y=−12y=−12.

Bảng biến thiên :

Đồ thị như hình bên.

24 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

Hàm lũy thừa, mũ và loagrit

Hàm lũy thừa, mũ và loagrit

29 tháng 5 2017

1) TXĐ: \(D=R\)
2) Sự biến thiên
Giới hạn hàm số tại vô cực
\(\lim\limits_{x\rightarrow+\infty}y\left(x\right)=\lim\limits_{x\rightarrow+\infty}\left(x^2-4x+3\right)=+\infty\)

\(\lim\limits_{x\rightarrow-\infty}y\left(x\right)=\lim\limits_{x\rightarrow-\infty}\left(x^2-4x+3\right)=+\infty\)
Chiều biến thiên
\(y'\left(x\right)=2x-4\)
\(y'\left(x\right)=0\)\(\Leftrightarrow x=2\)
Bảng biến thiên:
TenAnh1 TenAnh1 B = (-3.8, -6.16) B = (-3.8, -6.16) B = (-3.8, -6.16) C = (11.56, -6.16) C = (11.56, -6.16) C = (11.56, -6.16) D = (-4.16, -5.98) D = (-4.16, -5.98) D = (-4.16, -5.98) E = (11.2, -5.98) E = (11.2, -5.98) E = (11.2, -5.98)
Nhận xét: hàm số nghịch biên trên khoảng \(\left(-\infty;2\right)\) và đồng biến trên khoảng \(\left(2;+\infty\right)\).
Hàm số đạt cực tiểu tại \(x=2\) với \(y_{CT}=-1\).
- Đồ thị hàm số
TenAnh1 TenAnh1 B = (-3.8, -6.16) B = (-3.8, -6.16) B = (-3.8, -6.16) C = (11.56, -6.16) C = (11.56, -6.16) C = (11.56, -6.16) D = (-4.16, -5.98) D = (-4.16, -5.98) D = (-4.16, -5.98) E = (11.2, -5.98) E = (11.2, -5.98) E = (11.2, -5.98) F = (-4.2, -5.86) F = (-4.2, -5.86) F = (-4.2, -5.86) G = (11.16, -5.86) G = (11.16, -5.86) G = (11.16, -5.86) x y O

29 tháng 5 2017

b)
1) Tập xác định: \(D=R\)
2) Sự biến thiên
\(y'\left(x\right)=-3-2x\);\(y'\left(x\right)=0\Leftrightarrow x=\dfrac{-3}{2}\).
Bảng biến thiên:
TenAnh1 TenAnh1 B = (-3.8, -6.16) B = (-3.8, -6.16) B = (-3.8, -6.16) C = (11.56, -6.16) C = (11.56, -6.16) C = (11.56, -6.16) D = (-4.16, -5.98) D = (-4.16, -5.98) D = (-4.16, -5.98) E = (11.2, -5.98) E = (11.2, -5.98) E = (11.2, -5.98) F = (-4.2, -5.86) F = (-4.2, -5.86) F = (-4.2, -5.86) G = (11.16, -5.86) G = (11.16, -5.86) G = (11.16, -5.86) H = (-4.34, -5.96) H = (-4.34, -5.96) H = (-4.34, -5.96) I = (11.02, -5.96) I = (11.02, -5.96) I = (11.02, -5.96)
Nhận xét:
Hàm số đồng biến trên \(\left(-\infty;\dfrac{-3}{2}\right)\) và nghịch biến trên \(\left(-\dfrac{3}{2};+\infty\right)\).
Hàm số đạt cực đại tại \(x=-\dfrac{3}{2}\) với \(y_{CĐ}=\dfrac{13}{4}\).
3) Đồ thi hàm số
Giao Ox: \(y=0\Rightarrow2-3x-x^2=0\)\(\Leftrightarrow\left[{}\begin{matrix}x_1=\dfrac{-3+\sqrt{17}}{2}\\x_2=\dfrac{-3-\sqrt{17}}{2}\end{matrix}\right.\)
\(A\left(\dfrac{-3-\sqrt{17}}{2};0\right);B\left(\dfrac{-3+\sqrt{17}}{2};0\right)\).
Giao Oy: \(x=0\Rightarrow y=2\)
\(C\left(0;2\right)\).
TenAnh1 TenAnh1 B = (-3.8, -6.16) B = (-3.8, -6.16) B = (-3.8, -6.16) C = (11.56, -6.16) C = (11.56, -6.16) C = (11.56, -6.16) D = (-4.16, -5.98) D = (-4.16, -5.98) D = (-4.16, -5.98) E = (11.2, -5.98) E = (11.2, -5.98) E = (11.2, -5.98) F = (-4.2, -5.86) F = (-4.2, -5.86) F = (-4.2, -5.86) G = (11.16, -5.86) G = (11.16, -5.86) G = (11.16, -5.86) H = (-4.34, -5.96) H = (-4.34, -5.96) H = (-4.34, -5.96) I = (11.02, -5.96) I = (11.02, -5.96) I = (11.02, -5.96) J = (-4.34, -5.84) J = (-4.34, -5.84) J = (-4.34, -5.84) K = (11.02, -5.84) K = (11.02, -5.84) K = (11.02, -5.84) x y A B O

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

31 tháng 3 2017

a) Điểm (-1 ; 1) thuộc đồ thị của hàm số ⇔ .

b) m = 1 . Tập xác định : R.

y' = 0 ⇔ x = 0.

Bảng biến thiên:

Đồ thị như hình bên.

c) Vậy hai điểm thuộc (C) có tung độ là A(1 ; ) và B(-1 ; ). Ta có y'(-1) = -2, y'(1) = 2.

Phương trình tiếp tuyến với (C) tại A là : y - = y'(1)(x - 1) ⇔ y = 2x -

Phương trình tiếp tuyến với (C) tại B là : y - = y'(-1)(x + 1) ⇔ y = -2x - .

31 tháng 3 2017

a) Tập xác định: R; y' = 3(1 - x2); y' = 0 ⇔ x = ± 1 .

Bảng biến thiên :

Đồ thị như hình bên.

b) Tập xác định : R ; y' = 3x2 + 8x + 4; y' = 0 ⇔ x= -2, x = .

Bảng biến thiên :

Đồ thị như hình bên.

c) Tập xác định : R ;

y' = 3x2 + 2x + 9 > 0, ∀x. Vậy hàm số luôn đồng biến, không có cực trị.

Bảng biến thiên :

Đồ thị hàm số như hình bên.

d) Tập xác định : R ;

y' = -6x2 ≤ 0, ∀x. Vậy hàm số luôn nghịch biến, không có cực trị.

Bảng biến thiên :

Đồ thị hàm số như hình bên.

31 tháng 3 2017

Lời giải hay đó!!!

Nhưng không biết người giải nó có hiểu nó không....gianroi (thở dài)

27 tháng 4 2017

a) Hàm số y=

Tập xác định: (0; +∞).

Sự biến thiên: > 0, ∀x ∈ (0; +∞) nên hàm số luôn luôn đồng biến.

Giới hạn đặc biệt: = 0, = +∞, đồ thị hàm số có tiệm cận.

Bảng biến thiên

Đồ thị( hình bên). Đồ thị hàm số qua (1;1), (2;).

b) y= .

Tập xác định: ℝ \{0}.

Sự biến thiên: < 0, ∀xj# 0, hàm nghich biến trong hai khoảng (-∞;0) và (0; +∞).

Giới hạn đặc biệt:= +∞, = -∞, = 0, = 0; đồ thị hàm số nhận trục tung làm tiệm cận đứng, trục hoành làm tiệm cận ngang.

Bảng biến thiên

Đồ thị ( hình dưới). Đồ thị qua (-1;-1), (1;1), (2; ), ( -2; ). Hàm số đồ thị đã cho là hàm số lẻ nên đối xứng qua gốc tọ độ.