Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(\left(2x+1\right)^3=9\left(2x+1\right)\)
\(\Leftrightarrow\left(2x+1\right)^3-9\left(2x+1\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left[\left(2x+1\right)^2-9\right]=0\)
\(\Leftrightarrow\left(2x+1\right)\left(2x+1-3\right)\left(2x+1+3\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(2x-2\right)\left(2x+4\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2x+1=0\\2x-2=0\\2x+4=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-\frac{1}{2}\\x=1\\x=-2\end{array}\right.\)
Bài 2:
\(A=\left(2x-1\right)^2+\left(3-y\right)^2+2017\)
Vì: \(\left(2x-1\right)^2+\left(3-y\right)^2\ge0\)
=> \(\left(2x-1\right)^2+\left(3-y\right)^2+2017\ge2017\)
Dấu "=" xảy ra khi \(x=\frac{1}{2};y=3\)
Vậy GTNN của A là 2017 khi \(x=\frac{1}{2};y=3\)
Bài 1:
(2x + 1)3 = 9.(2x + 1)
=> (2x + 1)3 - 9.(2x + 1) = 0
=> (2x + 1).[(2x + 1)2 - 9] = 0
=> (2x + 1).(2x + 1 - 3).(2x + 1 + 3) = 0
=> (2x + 1).(2x - 2).(2x + 4) = 0
\(\Rightarrow\left[\begin{array}{nghiempt}2x+1=0\\2x-2=0\\2x+4=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}2x=-1\\2x=2\\2x=-4\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{-1}{2}\\x=1\\x=-2\end{array}\right.\)
Vậy \(x\in\left\{\frac{-1}{2};1;-2\right\}\)
Bài 2:
Có: \(\left(2x-1\right)^2\ge0;\left(3-y\right)^2\ge0\forall x;y\)
=> \(A=\left(2x-1\right)^2+\left(3-y\right)^2+2017\ge2017\)
Dấu "=" xảy ra khi và chỉ khi \(\begin{cases}\left(2x-1\right)^2=0\\\left(3-y\right)^2=0\end{cases}\)\(\Rightarrow\begin{cases}2x-1=0\\3-y=0\end{cases}\)\(\Rightarrow\begin{cases}2x=1\\y=3\end{cases}\)\(\Rightarrow\begin{cases}x=\frac{1}{2}\\y=3\end{cases}\)
Vậy GTNN của A là 2017 khi và chỉ khi \(x=\frac{1}{2};y=3\)
Ta có:\(\frac{x+y}{2}=\frac{y-5}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:\(\frac{x+y}{2}=\frac{y-5}{3}=\frac{x+y+y-5}{2+3}=\frac{x+2y-5}{5}\)
\(\Rightarrow\frac{x+2y-5}{5}=\frac{x+2y-5}{y-1}\)\(\Rightarrow y-1=5\Rightarrow y=6\)
\(\Rightarrow\frac{x+6}{2}=\frac{6-5}{3}\)\(\Rightarrow\frac{x+6}{2}=\frac{1}{3}\)
\(\Rightarrow3\cdot\left(x+6\right)=2\)
\(\Rightarrow3x+18=2\)
\(\Rightarrow3x=-16\Rightarrow x=\frac{-16}{3}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{x+y}{2}=\frac{y-5}{3}=\frac{x+y+y-5}{2+3}=\frac{x+2y-5}{5}\)
\(=\frac{x+2y-5}{y-1}\) (theo đề bài)
=> y - 1 = 5
=> y = 5 + 1 = 6
Thay y = 6 vào đề bài ta có: \(\frac{x+6}{2}=\frac{7-6}{3}=\frac{1}{3}\)
\(\Rightarrow x=\frac{1}{3}.2-6=\frac{-16}{3}\)
Vậy \(x=\frac{-16}{3};y=6\)
a/
Ta có : \(3^{420}=\left(3^4\right)^{105}=81^{105}\) ; \(4^{315}=\left(4^3\right)^{105}=64^{105}\)
Vì 81 > 64 nên ..................................
b/Ta có : \(\begin{cases}\left(x^2-4\right)^2\ge0\\\left(3y-2\right)^2\ge0\end{cases}\) \(\Rightarrow\left(x^2-4\right)^2+\left(3y-2\right)^2\ge0\)
Do đó dấu "=" xảy ra chỉ khi \(\begin{cases}\left(x^2-4\right)^2=0\\\left(3y-2\right)^2=0\end{cases}\) \(\Leftrightarrow\begin{cases}x=\pm2\\y=\frac{2}{3}\end{cases}\)
Ta có:\(\frac{x+1}{11}+\frac{x+2}{10}=\frac{x+3}{9}+\frac{x+4}{8}\)
\(\Rightarrow1+\frac{x+1}{11}+1+\frac{x+2}{10}=1+\frac{x+3}{9}+1+\frac{x+4}{8}\)
\(\Rightarrow\frac{x+12}{11}+\frac{x+12}{10}=\frac{x+12}{9}+\frac{x+12}{8}\)
\(\Rightarrow\frac{x+12}{11}+\frac{x+12}{10}-\frac{x+12}{9}-\frac{x+12}{8}=0\)
\(\Rightarrow\left(x+12\right)\left(\frac{1}{11}+\frac{1}{10}-\frac{1}{9}-\frac{1}{8}\right)=0\)
Mà \(\left(\frac{1}{11}+\frac{1}{10}-\frac{1}{9}-\frac{1}{8}\right)>0\)
\(\Rightarrow x+12=0\Rightarrow x=-12\)
\(\frac{x+1}{11}+\frac{x+2}{10}=\frac{x+3}{9}+\frac{x+4}{8}\)
<=> \(\frac{x+1}{11}+\frac{x+2}{10}-\frac{x+3}{9}-\frac{x+4}{8}=0\)
<=> \(\left(\frac{x+1}{11}+1\right)+\left(\frac{x+2}{10}+1\right)-\left(\frac{x+3}{9}+1\right)-\left(\frac{x+4}{8}+1\right)=0\)<=> \(\frac{x+12}{11}+\frac{x+12}{10}-\frac{x+12}{9}-\frac{x+12}{8}=0\)
<=> \(\left(x+12\right)\left(\frac{1}{11}+\frac{1}{10}-\frac{1}{9}-\frac{1}{8}\right)=0\)
<=> x + 12 = 0.Vì \(\frac{1}{11}+\frac{1}{10}-\frac{1}{9}-\frac{1}{8}\ne0\)
<=> x = -12
\(\sqrt{\left(2x-5\right)^2}=3\)
\(\Rightarrow\left(2x-5\right)^2=9\)
\(\Rightarrow\left[\begin{array}{nghiempt}2x-5=3\\2x-5=-3\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=4\\x=1\end{array}\right.\)
Vậy x=4 ; x=1
\(\sqrt{\left(2x-5\right)^2}=3\)
\(\Leftrightarrow\left|2x-5\right|=3\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2x-5=3\\2x-5=-3\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=4\\x=1\end{array}\right.\)
bạn ơi bn lấy ảnh mạng phải ko
hình ảnh girl xinh đáng yêu và quyến rũ nhất Việt Nam - Ảnh đẹp
1)Ta có:\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)
\(\Rightarrow\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{d}=\frac{a}{d}\)(đpcm)
Ta có:A=\(\frac{a}{b+c}=\frac{c}{a+b}=\frac{b}{c+a}\)
\(\Rightarrow A=\frac{a}{b+c}=\frac{c}{a+b}=\frac{b}{a+c}=\frac{a+c+b}{b+c+a+b+a+c}\)\(\Rightarrow A=\frac{a+b+c}{2a+2b+2c}=\frac{\left(a+b+c\right)}{2\left(a+b+c\right)}=\frac{1}{2}\)
Vậy A=\(\frac{1}{2}\)
1 ngày 1 con ngựa ăn được số phần của 1 xe cỏ là :
1 : 4 = 1/4 ( số cỏ )
1 ngày 1 con dê ăn được số phần của 1 xe cỏ là :
1 : 6 = 1/6 ( số cỏ )
1 ngày 1 con dê ăn được số phần của 1 xe cỏ là :
1 : 12 = 1/12 ( số cỏ )
Vậy cả 3 con ăn hết 1 xe cỏ trong :
1/4 + 1/6 + 1/12 = 2 ( ngày )
Đáp số : 2 ngày
Vì 12 là BCNN của 4,6, 12 nên ta có:
1 con ngựa ăn hết : 12 : 4 = 3 ( xe cỏ )
1 con dê ăn hết : 12 : 6 = 2 ( xe cỏ )
1 con cừu ăn hết : 12 : 12 = 1 ( xe cỏ )
Cả ba con ăn hết số xe cỏ là : 3 + 2 +1 =6 ( xe cỏ )
Vậy cả ba con ăn hết số xe cỏ trong: 12 : 6 = 2 ( ngày )
tích cho mình nhà mình làm theo cách lớp 7 đó tỉ lệ thuận đấy
Taco: (x - 2)^2>0 hoac = 0
suy ra : (x - 2 )^2 + 19 > hoac = 0
dau bang xay ra khi:
x - 2 = 0
x = 2 thi y =19
Bài 2 : ta có:-I2x -5I < 0
dấu bằng xảy ra khi :
23 - I2x - 5I<hoặc = 0
suy ra : 2x -5 = 0
x = 5/2