MỌI người giải gips...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2021

Câu 5:

Áp dụng BĐT Bunhia-copxki ta được:

\(\left(x_1^2+x_2^2+x_3^2+x_4^2+x_5^2\right)\left(1+1+1+1+1\right)\ge\left(x_1+x_2+x_3+x_4+x_5\right)^2\)

Suy ra: \(x_1+x_2+x_3+x_4+x_5\le\sqrt{5}\).

Lại dễ thấy: Vì \(y_1^2+x_1^2=...=x_5^2+y_5^2\text{ suy ra: }y_1^2+...+y_5^2=4.\text{ Kết hợp với }y_1,y_2,y_3,y_4,y_5\text{ không âm suy ra:}\)

\(0\le y_i\le2\left(\text{với }1\le i\le5\right).\text{ Suy ra: }2\left(y_1+...+y_5\right)\ge\left(y_1^2+...+y_5^2\right)=4\text{ hay:}\)

\(y_1+y_2+y_3+y_4+y_5\ge2\Rightarrow T\ge\frac{2}{\sqrt{5}}\text{ khi: }x_1=...=x_5=\frac{1}{\sqrt{5}};\text{ Các số }y\text{ thì có 4 số 0; 1 số 2}\)

Câu hơi tào lào -.-

10 tháng 8 2021

Ủa câu 5 tào lao thế.

14 tháng 10 2017

Ta thừa nhận định lý f(x) chia hết cho x-a thì f(a) =0 ( mình đang vội khỏi chứng minh nhé, nếu thắc mắc phiền bạn xem SGK 9 nha)

Thay 1 vào x, ta có

f(x) =14+12+a=0

2+a=0 suy ra a=-2

20 tháng 10 2021

???????

20 tháng 10 2021

simp!

Xét (O) có

MA là tiếp tuyến

MB là tiếp tuyến

DO đó; OM là tia phân giác của góc AOB

Xét ΔOAM vuông tại A có 

\(\tan\widehat{AOM}=\dfrac{AM}{AO}=\sqrt{3}\)

nên \(\widehat{AOM}=60^0\)

=>\(\widehat{AOB}=120^0\)

8 tháng 8 2017

1. \(\dfrac{4x}{4x^2-8x+7}+\dfrac{3x}{4x^2-10x+7}=1\)

Dễ thấy \(x=0\) ko phải là nghiệm của pt

Chia tử và mẫu cho x, ta được:

\(\dfrac{4}{4x-8+\dfrac{7}{x}}+\dfrac{3}{4x-10+\dfrac{7}{x}}=1\) (*)

Đặt \(t=4x+\dfrac{7}{x}-8\) thì:

(*) \(\Rightarrow\dfrac{4}{t}+\dfrac{3}{t-2}=1\)

Quy đồng lên tìm được t, sau đó dễ dàng tìm được x.

8 tháng 8 2017

2 bài kia tương tự bạn nhé, cũng chia tử và mẫu cho x rồi đặt ẩn phụ

Bài 2 đặt \(t=x+\dfrac{15}{x}\)

Bài 3 đặt \(t=x+\dfrac{3}{x}\)

14 tháng 10 2017

câu 1:

a2+b2+c2+42 = 2a+8b+10c

<=> a2-2a+1+b2 -8b+16+c2-10c+25=0

<=> (a-1)2+(b-4)2+(c-5)2=0

<=>a=1 và b=4 và c=5

=> a+b+c = 10

14 tháng 10 2017

ta có 2(a2+b2)=5ab

<=> 2a2+2b2-5ab=0

<=> 2a2-4ab-ab+2b2=0

<=> 2a(a-2b)-b(a-2b)=0

<=> (a-2b)(2a-b)=0

<=> a=2b(thỏa mãn)

hoặc b=2a( loại vì a>b)

với a=2b =>P=5b/5b=1

30 tháng 10 2017

Hoành độ đỉnh: \(\dfrac{-b}{2a}=-\dfrac{-2}{2}=1\)

a > 0 nên đồ thị hướng lên

Vậy HS đồng biến trong khoảng (1;+\(\infty\)) -> Chọn A