giúp mik với, mik đang câ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2021

a, C =n6(b+g)+12)8d3

b, D = m+n 978 np

12 tháng 8 2021

Mỗi lần về quê, từ xa em đã được nhìn thấy hình dáng hàng dừa xanh ngát, đung đưa trong gió. Nhìn hình ảnh ấy, em luôn thấy xúc động vô ngần.

Hàng dừa được người dân nơi đây trồng dọc theo bờ sông, dẫn lối đi vào trong làng. Cây dừa rất cao, vượt qua mọi tầng lá xanh của cây cối trong làng. Tàu dừa to, gồm nhiều nhánh lá nhỏ dài, như mái tóc đương xanh của người thiếu nữ xuân thì. Từng trái dừa lủng lẳng dưới tán lá, chứa bao dòng nước ngọt thanh - thứ nước mà những đứa trẻ luôn khao khát hơn bất kì loại nước ngọt nào.

Cây dừa gắn bó, cống hiến vô tư cho cuộc sống của người dân quê em. Người dân cũng vì thế mà tỉ mẩn, không để phí hoài dù chỉ một nhánh lá. Nước dừa, cùi dừa để ăn, uống trực tiếp, rồi con làm thành đủ thứ món ngon như mứt dừa, kẹo dừa hay đem kho với thịt. Lá dừa để tạo màu cho bánh kẹo, để gói bánh, hay phơi khô cả tàu lá lợp mái nhà. Rồi thân, vỏ, lá dừa khô có thể dùng để đun bếp. Những đứa trẻ ngày ngày chơi đùa dưới bóng mát của cây dừa, thi nhau leo lên đến ngọn cây, sung sướng ngắm nhìn thế giới bên ngoài làng quê.

Em rất yêu quý cây dừa. Đối với em cây dừa cũng như một người bạn thân thiết. Dù đi xa nơi đâu, em vẫn luôn nhớ về hình dáng cao lớn, trầm lặng ấy.

8 tháng 6 2016

Kẻ BK là đường cao của hình thang => BK = 12 cm
Từ B, kẻ BE//AC => ABEC là hình bình hành và BD vuông góc với BE 
Áp dụng hệ thức lượng trong tam giác BDE vuông ở B :1/BD2 + 1/BE2 = 1/BK2 
=> BE = 20 cm 
Theo định lý Py-ta-go, BD2 +BE2 =DE2 => DE = 25 cm
Lại có DE = DC+CE=DC+AB 
=> SABCD =\(\frac{\left(DC+AB\right).BK}{2}=\frac{25.12}{2}=150\) (cm2)

DD
7 tháng 11 2021

Bài 1: 

Kẻ \(OM\perp AB\)\(OM\)cắt \(CD\)tại \(N\).

Khi đó \(MN=8cm\).

TH1: \(AB,CD\)nằm cùng phía đối với \(O\).

\(R^2=OC^2=ON^2+CN^2=h^2+\left(\frac{25}{2}\right)^2\)(\(h=CN\)) (1)

\(R^2=OA^2=OM^2+AM^2=\left(h+8\right)^2+\left(\frac{15}{2}\right)^2\)(2) 

Từ (1) và (2) suy ra \(R=\frac{\sqrt{2581}}{4},h=\frac{9}{4}\).

TH2: \(AB,CD\)nằm khác phía với \(O\).

\(R^2=OC^2=ON^2+CN^2=h^2+\left(\frac{25}{2}\right)^2\)(\(h=CN\)) (3)

\(R^2=OA^2=OM^2+AM^2=\left(8-h\right)^2+\left(\frac{15}{2}\right)^2\)(4)

Từ (3) và (4) suy ra \(R=\frac{\sqrt{2581}}{4},h=\frac{-9}{4}\)(loại).

DD
7 tháng 11 2021

Bài 3: 

Lấy \(A'\)đối xứng với \(A\)qua \(Ox\), khi đó \(A'\)có tọa độ là \(\left(1,-2\right)\).

\(MA+MB=MA'+MB\ge A'B\)

Dấu \(=\)xảy ra khi \(M\)là giao điểm của \(A'B\)với trục \(Ox\).

Suy ra \(M\left(\frac{5}{3},0\right)\).

5 tháng 8 2017

Ta có:

\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)

\(=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)

Áp dụng vào bài toán ta được

\(A=\dfrac{1}{2.\sqrt{1}+1.\sqrt{2}}+\dfrac{1}{3.\sqrt{2}+2.\sqrt{3}}+...+\dfrac{1}{100.\sqrt{99}+99.\sqrt{100}}\)\(=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{99}}-\dfrac{1}{\sqrt{100}}\)

\(=1-\dfrac{1}{10}=\dfrac{9}{10}\)

13 tháng 7 2017

1, \(\left\{{}\begin{matrix}x+\dfrac{1}{y}=2\\y+\dfrac{1}{z}=2\\z+\dfrac{1}{x}=2\end{matrix}\right.\) => x+y+z+\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)=6. Mà \(\left(x+\dfrac{1}{x}\right)+\left(y+\dfrac{1}{y}\right)+\left(z+\dfrac{1}{z}\right)\ge2+2+2=6\left(Cô-si\right)\). Dấu "=" xảy ra khi x2=y2=z2=1 và x,y,z >0 => x=y=z=1 Vậy.... Bài này phải cho đk x,y,z>0

13 tháng 7 2017

2, Ta có : x+y+xy=19 <=> (x+1)(y+1)=20 (1) y+z+yz=11 <=> (y+1)(z+1)=12 (2) z+x+zx=14 <=> (z+1)(x+1)=15 (3) => (x+1)2(y+1)2(z+1)2=3600 => (x+1)(y+1)(z+1)=60 (*) ( bài này cx phải có ddk x,y,z) . Chia (*) với (1),(2),(3) ta có : z+1=3, x+1=5, y+1=4 <=> x=4,y=3,z=2

28 tháng 8 2021

Xét ta giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức :

 \(AB^2=BH.BC=BH.\left(CH+BH\right)\Rightarrow25=BH\left(\frac{144}{13}+BH\right)\Rightarrow BH=\frac{25}{13}\)cm 

\(\Rightarrow BC=HB+HC=\frac{144}{13}+\frac{25}{13}=\frac{196}{13}\)

* Áp dụng hệ thức : \(AC^2=HC.BC=\frac{144}{13}.\frac{169}{13}=144\Rightarrow AC=12\)cm 

23 tháng 5 2016

Đkiện: x\(\ge\)0 ; x\(\ne\)9

A=\(\frac{2\sqrt{x}}{\sqrt{x}+2}\)+\(\frac{7\sqrt{x}+4}{x-\sqrt{x}-6}\)-\(\frac{\sqrt{x}+2}{\sqrt{x}-3}\)=\(\frac{2\sqrt{x}}{\sqrt{x}+2}\)+\(\frac{7\sqrt{x}+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)-\(\frac{\sqrt{x}+2}{\sqrt{x}-3}\)=\(\frac{2\sqrt{x}.\left(\sqrt{x}-3\right)+7\sqrt{x}+4-\left(\sqrt{x}+2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)

=\(\frac{2x-6\sqrt{x}+7\sqrt{x}+4-x-4\sqrt{x}-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)=\(\frac{x-3\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)=\(\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)=\(\frac{\sqrt{x}}{\left(\sqrt{x}+2\right)}\)=\(\frac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)}\)-\(\frac{2}{\left(\sqrt{x}+2\right)}\)=1-\(\frac{2}{\left(\sqrt{x}+2\right)}\)

Để A có giá trị nguyên thì \(\sqrt{x}+2\) là ước của 2

Ư(2)=-1;1;2;-2   ( điều kiện \(\sqrt{x}+2\)\(\ge\)2)

nên \(\sqrt{x}+2\)=2

=>\(\sqrt{x}\)=0=> x=0(thỏa mãn điều kiện)

23 tháng 5 2016
23 tháng 9 2021

đi ngủ đê ae