K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2017

1, \(\left\{{}\begin{matrix}x+\dfrac{1}{y}=2\\y+\dfrac{1}{z}=2\\z+\dfrac{1}{x}=2\end{matrix}\right.\) => x+y+z+\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)=6. Mà \(\left(x+\dfrac{1}{x}\right)+\left(y+\dfrac{1}{y}\right)+\left(z+\dfrac{1}{z}\right)\ge2+2+2=6\left(Cô-si\right)\). Dấu "=" xảy ra khi x2=y2=z2=1 và x,y,z >0 => x=y=z=1 Vậy.... Bài này phải cho đk x,y,z>0

13 tháng 7 2017

2, Ta có : x+y+xy=19 <=> (x+1)(y+1)=20 (1) y+z+yz=11 <=> (y+1)(z+1)=12 (2) z+x+zx=14 <=> (z+1)(x+1)=15 (3) => (x+1)2(y+1)2(z+1)2=3600 => (x+1)(y+1)(z+1)=60 (*) ( bài này cx phải có ddk x,y,z) . Chia (*) với (1),(2),(3) ta có : z+1=3, x+1=5, y+1=4 <=> x=4,y=3,z=2

a: Ta có: \(2\sqrt{28}+3\sqrt{63}-3\sqrt{\dfrac{112}{9}}-\sqrt{\dfrac{196}{7}}\)

\(=4\sqrt{7}+9\sqrt{7}-4\sqrt{7}-2\sqrt{7}\)

\(=7\sqrt{7}\)

b: Ta có: \(\sqrt{8+2\sqrt{7}}-\sqrt{12-\sqrt{140}}-\sqrt{5}\)

\(=\sqrt{7}+1-\sqrt{7}+\sqrt{5}-\sqrt{5}\)

=1

15 tháng 1 2021

bài nào???

15 tháng 1 2021

đâu tui hok thấy ??????

hay bạn quên chưa chat

5 tháng 1 2018

Vẽ hình giúp mình luôn nha cảm ơn nhiều

6 tháng 2 2016

Áp dụng BĐT cô si cho 2 số ko âm \(\sqrt{a}\) và \(\sqrt{b}\) ta được:

\(\sqrt{a}+\sqrt{b}\ge2\sqrt{\sqrt{ab}}\)

Suy ta: \(\frac{2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\le\frac{2\sqrt{ab}}{2\sqrt{\sqrt{ab}}}=\sqrt{\sqrt{ab}}=\sqrt[4]{ab}\)

=>điều cần chứng minh