Các bạn giải hộ mình bài này với:

Cho tam giác...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có 

P là trung điểm của AC

N là trung điểm của BC

Do đó: PN là đường trung bình của ΔBAC

Suy ra: PN//AB và \(PN=\dfrac{AB}{2}\)

mà M\(\in\)AB và \(AM=\dfrac{AB}{2}\)

nên PN//AM và PN=AM

Xét tứ giác AMNP có 

PN//AM

PN=AM

Do đó: AMNP là hình bình hành

mà \(\widehat{PAM}=90^0\)

nên AMNP là hình chữ nhật

28 tháng 8 2021

bạn/anh/chị giải nốt giúp mình/em được ko ạ?

a: Xét ΔCAB có CP/CA=CN/CB

nên PN//AB và PN=AB/2

=>PN//AM và PN=AM

=>AMNP là hình bình hành

mà góc PAM=90 độ

nên AMNP là hình chữ nhật

b: \(AC=\sqrt{10^2-8^2}=6\left(cm\right)\)

AH=6*8/10=4,8cm

 

9 tháng 1 2023

a) Xét tam giác ABC có : BN = CN

                                        AP = PC

suy ra : NP là đường trung bình của tam giác ABC

suy ra : NP song song với AB và NP = AB/2

Xét tam giác ABC có : AM = BM ; BN = CN

suy ra MN là đường trung bình của tam giác ABC

suy ra MN song song với AC và MN = AC/2

Xét tứ giác AMNP có : MN song song với AP ( MN song song AC )

                                    NP song song với MA ( NP song song AB )

suy ra : tứ giác AMNP là hbh

mà góc BAC = 90 độ

suy ra : hbh AMNP là hcn

b) Ta có : công thức tính diện tích hcn là : a.b ( trong đó a,b là chiều dài hai cạnh kề nhau của hcn )

suy ra : công thức tính diện tích hcn AMNP là :

    SAMNP = MN.NP

Ta có : MN = AC/2

mà AC = 8

suy ra : MN = 8/2 = 4cm

Ta có : NP = AB/2

mà AB = 6

suy ra : NP = 6/2 = 3cm

suy ra : diện tích hcn AMNP = 4.3 = 12 (cm2)

c) phần c hình như sai rồi á bạn

d) Ta có : AMNP là hcn ( đã C/M ở phần a )

Để hcn AMNP là hình vuông

khi và chỉ khi : MA = MN 

mà MA = BA/2

      MN = CA/2

suy ra : để hcn nhật AMNP là hv thì AB = AC

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của BC

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//AC và \(MN=\dfrac{AC}{2}\)

\(\Leftrightarrow MN=\dfrac{12}{2}=6\left(cm\right)\)

b: Ta có: MN//AC và \(MN=\dfrac{AC}{2}\)

mà P\(\in\)AC và \(AP=\dfrac{AC}{2}\)(P là trung điểm của AC

nên MN//AP và MN=AP

Xét ΔABC có 

M là trung điểm của AB

P là trung điểm của AC

Do đó: MP là đường trung bình của ΔABC

Suy ra: MP//BC và \(MP=\dfrac{BC}{2}\)

mà N\(\in\)BC và \(BM=\dfrac{BC}{2}\)

nên MP//BN và MP=BN

Xét tứ giác AMNP có 

MN//AP

MN=AP

Do đó: AMNP là hình bình hành

Xét tứ giác BMPN có 

MP//BN

MP=BN

Do đó: BMPN là hình bình hành

c) Hình bình hành AMNP trở thành hình vuông khi \(\left\{{}\begin{matrix}\widehat{MAP}=90^0\\AM=AP\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\widehat{BAC}=90^0\\AB=AC\end{matrix}\right.\)

2 tháng 6 2020

áp dụng Pytago cho tam giác ABC ta đc: BC= \(\sqrt{15^2+8^2}=17\)

diện tích tam giác  ABC=1/2. AB.BC = 1/2 AH.BC => AB.BC=AH.BC=> AH=15.8:17=120/17

b, Tứ giác AMNH là hình chữ nhật vì có 3 góc vuông.

suy ra MN=AH = 120/17

c, Ta thấy tam giác AMH đồng dạng tam giác AHB (g.g) suy ra AM/AH = AH/ AB => AM.AB =AH^2

tam giác ANH đồng dạng tam giác AHC (g.g) => AN/AH = AH/AC => AN.AC = AH^2

suy ra AM.AB = AN.AC.

d. góc HAB = góc ACB ( cùng phụ góc CAH)

suy ra tam giác AMH đồng dạng tam giác CAB.

theo bài ta có \(S_{AMHN}=2S_{AMH}=\frac{1}{2}S_{CAB}\)

suy ra \(\frac{S_{AMH}}{S_{CAB}}=\frac{1}{4}\) mà 2 tam giác này đồng dạng nên suy ra \(\left(\frac{AH}{BC}\right)^2=\frac{1}{4}\Rightarrow\frac{AH}{BC}=\frac{1}{2}\Rightarrow AH=\frac{1}{2}BC\)

do đó tam giác ABC phải vuông cân.

29 tháng 5 2019

Bổ sung đề bài câu d,

Tam giác ABC cần thêm điều kiện gì để diện tích tứ giác AMHN bằng \(\frac{1}{2}\) diện tích tam giác ABC.

29 tháng 5 2019

a, tam giác ABC vuông tại A (gt)

=> AB^2 + AC^2 = BC ^2 (đl PYTAGO)

AB = 8; AC = 15

=> 8^2 + 15^2 = BC^2

=> BC^2 = 289

=> BC = 17 do BC > 0