Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 . Ta có :
AP // BC ( gt )
góc PAC và góc BCA ở vị trí so le trong
Suy ra : góc PAC = góc BCA
Xét tam giác PNA và tam giác MNC , ta có :
góc ANP = góc MNC ( đối đỉnh )
AN = NC ( N là trung điểm AC )
góc PAN = góc NCM ( cmt )
Do đó : tam giác PNA = tam giác MNC
b . Xét tứ giác AMPC , ta có :
AP // MC ( AP // BC )
AP = MC ( tam giác PNA = tam giác MNC )
Suy ra : tứ giác AMPC là hình bình hành
=> PC = AM
1/
Xét tg AOC và tg BOD có
OA=OB; OC=OD
\(\widehat{AOC}=\widehat{BOD}\) (góc đối đỉnh)
\(\Rightarrow\Delta AOC=\Delta BOD\left(c.g.c\right)\)
Ta có OA=OB; OC=OD => ACBD là hình bình hành (Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường thig tứ giác đó là hbh) => AC//BD (trong hình bình hành các cặp cạnh đối // với nhau từng đôi một)
2/ Xét tg ACD và tg BDC có
DC chung
AC=BD; AD=BC (trong hbh các cặp cạnh đối bằng nhau từng đôi một)
\(\Rightarrow\Delta ACD=\Delta BDC\left(c.c.c\right)\)
3/
Xet tg DAE và tg CBF có
AD=BC (cạnh đối hbh ACBD)
AE=BF (giả thiết)
\(\widehat{DAE}=\widehat{CBF}\) (Hai góc đối của hình bình hành ACBF)
\(\Rightarrow\Delta DAE=\Delta CBF\left(c.g.c\right)\)
4/
Ta có
CE//DF (cạnh đối của hbh ACBF)
CE=AC-AE; DF=BD-BF
mà AC=BD; AE=BF
=> CE=DF
=> ECFD là hình bình hành (tứ giác có cặp cạnh đối // và bằng nhau là hbh)
=> DE//CF (trong hbh các cặp cạnh đối // với nhau từng đôi một)
Trong hbh ECFD có EF và CD là hai đường chéo
=> EF và CD cắt nhau tại trung điểm mỗi đường (Trong hbh hai đường chéo cắt nhau tại trung điểm mỗi đường)
Mà O là trung điểm CD => O là trung điểm của EF => E; O; F thẳng hàng
\(a,\frac{5}{6}-2\sqrt{\frac{4}{9}}+\sqrt{\left(-2\right)^2}\)
\(=\frac{5}{6}-2.\frac{2}{3}+2\)
\(=\frac{5}{6}-\frac{4}{6}+\frac{12}{6}\)
\(=\frac{5-4+12}{6}=\frac{13}{6}\)
\(b,\left(-3\right)^2.\left(\frac{1}{3}\right)^3:\left[\left(-\frac{2}{3}\right)^3-1\frac{1}{3}\right]-\left(-200\right)^0\)
\(=9.\frac{1}{27}:\left(-\frac{8}{27}-\frac{5}{3}\right)-1\)
\(=\frac{1}{3}:\left(-\frac{8}{27}-\frac{45}{27}\right)-1\)
\(=\frac{1}{3}:\left(-\frac{53}{27}\right)-1\)
\(=\frac{1}{3}.\left(-\frac{27}{53}\right)-1\)
\(=-\frac{9}{53}-1=-\frac{9}{53}-\frac{53}{53}\)
\(=-\frac{62}{53}\)
\(c,\left(-0,5-\frac{3}{5}\right):\left(-3\right)+\frac{1}{3}-\left(-\frac{1}{6}\right):2\)
\(=\left(-\frac{1}{2}-\frac{3}{5}\right).\frac{1}{3}+\frac{1}{3}-\left(-\frac{1}{6}\right).\left(-\frac{1}{2}\right)\)
\(=\left(-\frac{5}{10}-\frac{6}{10}\right).\frac{1}{3}+\frac{1}{3}-\frac{1}{12}\)
\(=-\frac{11}{10}.\frac{1}{3}+\frac{1}{3}-\frac{1}{12}\)
\(=\frac{1}{3}\left(-\frac{11}{10}-\frac{1}{12}\right)\)
\(=\frac{1}{3}\left(-\frac{66}{60}-\frac{5}{60}\right)\)
\(=\frac{1}{3}.\left(-\frac{71}{60}\right)\)
\(=-\frac{71}{180}\)