Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
BD=CE
\(\widehat{ABD}=\widehat{ACE}\)
Do đó: ΔABD=ΔACE
Suy ra: AB=AC
hay ΔABC cân tại A
b: XétΔABC có
AD là đường cao
CH là đường cao
AD cắt CH tại D
Do đó: D là trực tâm của ΔABC
=>BD vuông góc với AC
\(\frac{a}{b+c+d}=\frac{b}{c+d+a}=\frac{c}{d+a+b}=\frac{d}{a+b+c}\)
\(\Leftrightarrow\frac{a}{b+c+d}+1=\frac{b}{c+d+a}+1=\frac{c}{d+a+b}+1=\frac{d}{a+b+c}+1\)
\(\Leftrightarrow\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{c+d+a}=\frac{a+b+c+d}{d+a+b}=\frac{a+b+c+d}{a+b+c}\)
\(\Leftrightarrow\orbr{\begin{cases}a+b+c+d=0\\b+c+d=c+d+a=d+a+b=a+b+c\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}a+b+c+d=0\\a=b=c=d\end{cases}}\)
Với \(a+b+c+d=0\):
\(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
\(=\frac{-\left(c+d\right)}{c+d}+\frac{-\left(d+a\right)}{d+a}+\frac{-\left(a+b\right)}{a+b}+\frac{-\left(b+c\right)}{b+c}\)
\(=-1-1-1-1=-4\)
Nếu \(a=b=c=d\):
\(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=1+1+1+1=4\)
dạ em lớp 5 ko bít làm bài lớp 7 ạ còn anh em đang ngủ thật sự xin lỗi anh
\(a,\frac{5}{6}-2\sqrt{\frac{4}{9}}+\sqrt{\left(-2\right)^2}\)
\(=\frac{5}{6}-2.\frac{2}{3}+2\)
\(=\frac{5}{6}-\frac{4}{6}+\frac{12}{6}\)
\(=\frac{5-4+12}{6}=\frac{13}{6}\)
\(b,\left(-3\right)^2.\left(\frac{1}{3}\right)^3:\left[\left(-\frac{2}{3}\right)^3-1\frac{1}{3}\right]-\left(-200\right)^0\)
\(=9.\frac{1}{27}:\left(-\frac{8}{27}-\frac{5}{3}\right)-1\)
\(=\frac{1}{3}:\left(-\frac{8}{27}-\frac{45}{27}\right)-1\)
\(=\frac{1}{3}:\left(-\frac{53}{27}\right)-1\)
\(=\frac{1}{3}.\left(-\frac{27}{53}\right)-1\)
\(=-\frac{9}{53}-1=-\frac{9}{53}-\frac{53}{53}\)
\(=-\frac{62}{53}\)
\(c,\left(-0,5-\frac{3}{5}\right):\left(-3\right)+\frac{1}{3}-\left(-\frac{1}{6}\right):2\)
\(=\left(-\frac{1}{2}-\frac{3}{5}\right).\frac{1}{3}+\frac{1}{3}-\left(-\frac{1}{6}\right).\left(-\frac{1}{2}\right)\)
\(=\left(-\frac{5}{10}-\frac{6}{10}\right).\frac{1}{3}+\frac{1}{3}-\frac{1}{12}\)
\(=-\frac{11}{10}.\frac{1}{3}+\frac{1}{3}-\frac{1}{12}\)
\(=\frac{1}{3}\left(-\frac{11}{10}-\frac{1}{12}\right)\)
\(=\frac{1}{3}\left(-\frac{66}{60}-\frac{5}{60}\right)\)
\(=\frac{1}{3}.\left(-\frac{71}{60}\right)\)
\(=-\frac{71}{180}\)