Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đây là bài lớp 10 chứ nhỉ
ta có \(AC=20\times2=40\text{ hải lí}\), \(AB=15\times2=30\text{ hải lí}\)
áp dụng định lý cosin ta có :
\(BC=\sqrt{AB^2+AC^2-2AB.AC\text{c}osA}=\sqrt{40^2+30^2-2\times30\times40\times cos60^o}\simeq36.06\text{ hải lí}\)
1.3 Giải phương trình:
a) \(\sqrt{2x+3}=1+\sqrt{2}\)(ĐK: \(x\ge-\frac{3}{2}\))
\(\Leftrightarrow2x+3=\left(1+\sqrt{2}\right)^2=3+2\sqrt{2}\)
\(\Leftrightarrow2x=2\sqrt{2}\)
\(\Leftrightarrow x=\sqrt{2}\)(tm)
b) \(\sqrt{x+1}=\sqrt{5}+3\)(ĐK: \(x\ge-1\))
\(\Leftrightarrow x+1=\left(\sqrt{5}+3\right)^2=14+6\sqrt{5}\)
\(\Leftrightarrow x=13+6\sqrt{5}\)(tm)
c) \(\sqrt{3x-2}=2-\sqrt{3}\)(ĐK: \(x\ge\frac{2}{3}\))
\(\Leftrightarrow3x-2=\left(2-\sqrt{3}\right)^2=7-4\sqrt{3}\)
\(\Leftrightarrow x=\frac{9-4\sqrt{3}}{3}\)(tm)
1.4: Phân tích thành nhân tử:
a) \(ab+b\sqrt{a}+\sqrt{a}+1=b\sqrt{a}\left(\sqrt{a}+1\right)+\left(\sqrt{a}+1\right)=\left(b\sqrt{a}+1\right)\left(\sqrt{a}+1\right)\)
b) \(\sqrt{x^3}-\sqrt{y^3}+\sqrt{x^2y}-\sqrt{xy^2}=x\sqrt{x}-y\sqrt{y}+x\sqrt{y}-y\sqrt{x}\)
\(=\left(x-y\right)\left(\sqrt{x}+\sqrt{y}\right)\)
\(\left(d\right):\frac{x}{a}+\frac{y}{b}=1\)\(\left(1\right)\)
Thế \(x=a,y=0\)vào phương trình \(\left(1\right)\)thỏa mãn nên \(A\left(a,0\right)\)thuộc \(\left(d\right)\).
Thế \(x=0,y=b\)vào phương trình \(\left(1\right)\)thỏa mãn nên \(B\left(0,b\right)\)thuộc \(\left(d\right)\).
Do đó ta có đpcm.
Ta có : \(\frac{AB}{AC}=\frac{1}{4}\Rightarrow AB=\frac{1}{4}AC\)
Xét tam giác ABC vuông tại A, đường cao AH
* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{64}=\frac{1}{\left(\frac{1}{4}AC\right)^2}+\frac{1}{AC^2}\Leftrightarrow AC=8\sqrt{17}\)cm
\(\Rightarrow AB=\frac{8\sqrt{17}}{4}=2\sqrt{17}\)cm
Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=34\)cm
* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=2\)cm
-> HC = BC - HB = 32 cm
1)Thay x=4 vào biểu thức B ta được:
\(B=\left(\dfrac{x+1}{2}-\sqrt{x}\right)=\left(\dfrac{4+1}{2}-\sqrt{4}\right)=\dfrac{1}{2}\)
2)\(M=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}+1}\right)\left(\dfrac{x+1}{2}-\sqrt{x}\right)\) (đk:\(x\ge0;x\ne1\))
\(=\dfrac{\sqrt{x}+1-\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{x+1-2\sqrt{x}}{2}\)
\(=\dfrac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\left(\sqrt{x}-1\right)^2}{2}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
3) \(M=\dfrac{\sqrt{x}}{6}\)
=> \(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=\dfrac{\sqrt{x}}{6}\) \(\Leftrightarrow6\left(\sqrt{x}-1\right)=\sqrt{x}\left(\sqrt{x}+1\right)\)
\(\Leftrightarrow x-5\sqrt{x}+6=0\) \(\Leftrightarrow\)\(\left[{}\begin{matrix}\sqrt{x}=3\\\sqrt{x}=2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=9\\x=4\end{matrix}\right.\) (thỏa)
Vậy...
a) \(x=4\rightarrow\sqrt{x}=2\) (TMĐK)
Thay \(\sqrt{x}=2\) vào A ta có :
\(A=\left(\dfrac{1}{2-1}-\dfrac{1}{2+1}\right)=\left(1-\dfrac{1}{3}\right)=\dfrac{2}{3}\)
b) M=A.B
\(\rightarrow M=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}+1}\right).\left(\dfrac{x+1}{2}-\sqrt{x}\right)\)
\(\rightarrow M=\left(\dfrac{\sqrt{x}+1-\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right).\left(\dfrac{x+1-2\sqrt{x}}{2\sqrt{x}}\right)\)
\(\rightarrow M=\dfrac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)^2}{2\sqrt{x}}\)
\(\rightarrow M=\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(M=\dfrac{\sqrt{x}}{6}\)
\(\rightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}}{6}\)
\(\rightarrow6\left(\sqrt{x}-1\right)=\sqrt{x}+1\)
\(\rightarrow6\sqrt{x}-6-\sqrt{x}-1=0\)
\(\rightarrow5\sqrt{x}-7=0\)
\(\rightarrow\sqrt{x}=\dfrac{7}{5}\)
\(\rightarrow x=\pm\dfrac{5\sqrt{7}}{5}\)
\(\rightarrow x=\dfrac{5\sqrt{7}}{7}\) (TMĐK)