Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\left(đk:x\ge2;y\ge3;z\ge5\right)\)
\(< =>\left(x-2\right)-2\sqrt{x-2}+1+\left(y-3\right)-4\sqrt{y-3}+4+\left(z-5\right)-6\sqrt{z-5}+9=0\)
\(< =>\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\)
Do \(\left(\sqrt{x-2}-1\right)^2\ge0;\left(\sqrt{y-3}-2\right)^2\ge0;\left(\sqrt{z-5}-3\right)^2\ge0\)
Cộng theo vế ta được \(\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2\ge0\)
Mà \(\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\)
Dấu "=" xảy ra khi và chỉ khi x = 3 ; y = 7 ; z = 14 ( tmđk )
Vậy ...
\(A=\sqrt{27}-2\sqrt{12}-\sqrt{75}\)
\(A=\sqrt{9.3}-2\sqrt{3.4}-\sqrt{25.3}\)
\(A=3\sqrt{3}-4\sqrt{3}-5\sqrt{3}\)
\(A=-6\sqrt{3}\)
\(B=\frac{1}{3+\sqrt{7}}+\frac{1}{3-\sqrt{7}}\)
\(B=\frac{3-\sqrt{7}+3\sqrt{7}}{\left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right)}\)
\(B=\frac{6}{9-7}=3\)
\(A=\sqrt{27}-2\sqrt{12}-\sqrt{75}\)
\(=\sqrt{3^2.3}-2.\sqrt{2^2.3}-\sqrt{5^2.3}\)
\(=3\sqrt{3}-4\sqrt{3}-5\sqrt{3}\)
\(=-6\sqrt{3}\)
vậy \(A=-6\sqrt{3}\)
\(B=\frac{1}{3+\sqrt{7}}+\frac{1}{3-\sqrt{7}}\)
\(B=\frac{3-\sqrt{7}}{\left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right)}+\frac{3+\sqrt{7}}{\left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right)}\)
\(B=\frac{3-\sqrt{7}+3+\sqrt{7}}{\left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right)}\)
\(B=\frac{6}{9-7}\)
\(B=\frac{6}{2}\)
\(B=3\)
vậy \(B=3\)
\(B=\frac{1}{\sqrt{16}-2}-\frac{\sqrt{16}}{4-16}\)
\(B=\frac{1}{4-2}-\frac{4}{-12}\)
\(B=\frac{1}{2}+\frac{1}{3}\)
\(B=\frac{5}{6}\)
\(II\)
\(1,\)số xe công ty dự định là x
số xe thực tế x-2
số tấn mỗi xe chở dự định là \(\frac{24}{x}\)
số tấn mỗi xe thực tế chở là \(\frac{24}{x-2}\)
\(\frac{24}{x-2}-\frac{24}{x}=2\)
\(24x-24x+48=2x\left(x-2\right)\)
\(48=2x^2-4x\)
\(2x^2-4x-48=0\)
\(a=2,b=-4,c=-48\)
\(\Delta=\left(b\right)^2-4ac=16-\left(-384\right)\)
\(\Delta=16+384=400>0\)<=> có 2no pt
\(\sqrt{\Delta}=\sqrt{400}=20\)
\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{24}{4}=6\left(tm\right)\)
\(x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{4-20}{4}=-4\left(ktm\right)\)
\(III\)
\(1,\hept{\begin{cases}2\left(x+y\right)+\sqrt{x+1}=4\\\left(x+y\right)-3\sqrt{x+1}=-5\end{cases}< =>\hept{\begin{cases}2\left(x+y\right)+\sqrt{x+1}=4\\2\left(x+y\right)-6\sqrt{x+1}=-10\end{cases}}}\)
\(7\sqrt{x+1}=14\)
\(\sqrt{x+1}=2\)
\(\sqrt{x+1}=\sqrt{4}\)
\(x+1=4\)
\(x=3\)
\(2\left(3+y\right)+\sqrt{3+1}=4\)
\(\hept{\begin{cases}x=3\\6+2y+2=4\end{cases}< =>\hept{\begin{cases}x=3\\2y=-4\end{cases}< =>\hept{\begin{cases}x=3\\y=-2\end{cases}}}}\)
\(\)
giúp cái gì?
bạn ơi cho mình xin cái đề bài