Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ps : Bn tự vẽ hình nhé, mk chỉ giải thôi ạ.
a) Xét \(\Delta ABC\)và \(\Delta HAB\)
\(\widehat{BAC}=\widehat{BHA}=90^O\)
\(\widehat{ABC}chung\)
\(\Rightarrow\Delta ABC~\Delta HBA\)( g - g )
b) Xét \(\Delta AHD\)và \(\Delta CED\)
\(\widehat{AHD}=\widehat{CED}=90^O\)
\(\widehat{ADH}=\widehat{CDE}\)( đối đỉnh )
\(\Rightarrow\Delta AHD~\Delta CED\left(g-g\right)\)
\(\Rightarrow\frac{AH}{AD}=\frac{CE}{CD}\Rightarrow AH.CD=AD.CE\)
c) Vì H là trung điểm của BD mà \(AH\perp BD\)
=> AH là đường trung trực của BD
\(\Rightarrow AB=AD\)
Mà : \(\frac{AH}{AD}=\frac{CE}{CD}\)
\(\Rightarrow\frac{AH}{AB}=\frac{CE}{CD}\)
Vì \(\Delta ABC~\Delta HBA\Rightarrow\frac{AH}{AB}=\frac{CA}{CB}\)
Do đó : \(\frac{CE}{CD}=\frac{CA}{CB}=\frac{8}{10}=\frac{4}{5}\)
Vì \(\Delta CED\)vuông
\(\Rightarrow S_{CED}=\frac{CE.ED}{2}\)
\(AB//FK\Rightarrow\widehat{BAH}=\widehat{KFH}\)
\(\widehat{AHB}=\widehat{FHK}=90^O\)
\(BA=HD\)
\(\Rightarrow\Delta AHB=\Delta FHK\)
\(\Rightarrow HA=HF\)mà \(CH\perp AF\)
=> CH là đường trung trực AF \(\Rightarrow\Delta ACF\)cân tại C
Do đó : D là trọng tâm \(\Delta ACF\)
\(\Rightarrow CD=\frac{2}{3}CH\)
Mà \(\cos ACB=\frac{AC}{BC}=\frac{CH}{CA}=\frac{4}{5}\Rightarrow CH=\frac{32}{5}\Rightarrow CD=\frac{64}{15}\)
\(\Rightarrow\frac{CE}{CD}=\frac{4}{5}\Rightarrow CE=\frac{256}{75}\)
\(ED=\sqrt{CD^2-CE^2}=\frac{64}{25}\)
\(\Rightarrow S_{CED}=\frac{8192}{1875}\)
d) Vì \(\Delta ACF\)cân tại C \(\Rightarrow KE//AF\Rightarrow\widehat{EKF}=\widehat{AFK}\)
Vì HK là trung tuyến \(\Delta AFK\)\(\Rightarrow\widehat{AFK}=\widehat{HKF}\)
Do đó : \(\widehat{HKF}=\widehat{EKF}\)
=> KD là phân giác \(\widehat{HKE}\)
# Aeri #
dễ òm
ta lấy: 9-1=8 ; 9-1=8 =>119=88
5-1=4 ; 5-4=1 =>145=41
9-1=8;9-7=2 => 179=82
=>9-1=8 ; 9-6=3 => 169=83
cách làm
Ta có: \(n^4+\frac{1}{4}=\frac{4n^4+1}{4}=\frac{\left(4n^4+4n^2+1\right)-4n^2}{4}=\frac{\left(2n^2+1\right)-4n^2}{4}=\frac{\left(2n^2+2n+1\right)\left(2n^2-2n+1\right)}{4}\)
Thế vô A ta được
\(A=\frac{\frac{5.1}{4}.\frac{25.13}{4}.\frac{61.41}{4}...\frac{1741.1625}{4}}{\frac{13.5}{4}.\frac{41.25}{4}.\frac{85.61}{4}...\frac{1861.1741}{4}}=\frac{1}{1861}\)
b; \(x\).(\(x\) + 3)2 - 3\(x\) = (\(x\) + 2)3 + 1
\(x\).(\(x^2\) + 6\(x\) + 9) - 3\(x\) = \(x^3\) + 6\(x^2\) + 12\(x\) + 8 + 1
\(x^3\) + 6\(x^2\) + 9\(x\) - 3\(x\) = \(x^3\) + 6\(x^2\) + 12\(x\) + 9
\(x^3\) + 6\(x^2\) + 9\(x\) - 3\(x\) - \(x^3\) - 6\(x^2\) - 12\(x\) = 9
(\(x^3\) - \(x^3\)) + (6\(x^2\) - 6\(x^2\)) + (9\(x\) - 3\(x\) - 12\(x\)) = 9
0 + 0 - 6\(x\) = 9
- 6\(x\) = 9
\(x\) = 9 : (-6)
\(x\) = \(\dfrac{-3}{2}\)
Vậy \(x=-\dfrac{3}{2}\)
Câu 1:
a; 7\(x\) - 10 = 4\(x\) + 11
7\(x\) - 4\(x\) = 10 + 11
3\(x\) = 21
\(x\) = 21 : 3
\(x\) = 7
Vậy \(x=7\)