Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 9:
Đặt f(x) = \(2x^3+ax+b\)
Vì f(x) = \(2x^3+ax+b\) chia cho x + 1 dư 6 và chia cho x - 2 dư 21 nên ta có:
\(\hept{\begin{cases}f\left(-1\right)=2\times\left(-1\right)^3-a+b=6\\f\left(2\right)=2\times2^3+2a+b=21\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-2-a+b=6\\16+2a+b=21\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-a+b=8\\2a+b=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-3a=3\\b=5-2a\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=-1\\b=7\end{cases}}\)
Vậy a = -1, b = 7
\(\left(x^3-2x^2\right)-\left(x^2-2x\right)+\left(7x-14\right)+a+14⋮x-2\)
nên a+14 chia hết cho x+2 nên:
a+14=0 hay a=-14
Định làm Bê du nhưng lười:vvvv
Gọi f(x)=x3-3x2+5x+a; g(x)=x-2.
Gọi thương của phép chia f(x) cho g(x) là h(x)
Vì f(x) là đa thức bậc 3 mà chia cho g(x) là đa thức bậc nhất nên h(x) phải là đa thức bậc hay
=> h(x) có dạng x2+bx+c
Ta có: f(x)=g(x).h(x)
<=> x3-3x2+5x+a=(x-2)(x2+bx+c)
<=> x3-3x2+5x+a=x3+bx2-2x2+cx-2bx-2c
<=>x3-3x2+5x+a=x3-x2(2-b)+x(c-2b)-2c
Đồng nhất hệ số, ta được:
\(\hept{\begin{cases}2-b=3\\c-2b=5\\-2c=a\end{cases}\Rightarrow\hept{\begin{cases}b=-1\\c=3\\a=-6\end{cases}}}\)
Vậy a=-6