Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác DIHK có
góc DIH=góc DKH=góc KDI=90 độ
nên DIHK là hình chữ nhật
b: Xét tứ giác IHAK có
IH//AK
IH=AK
Do đó: IHAK là hình bình hành
=>B là trung điểm chung của IA và HK
Xét ΔIKA có IC/IK=IB/IA
nên BC//KA
Xét ΔIDA có IB/IA=IM/ID
nên BM//DA
=>B,C,M thẳng hàng
Xét tứ giác ABCD có:
\(\begin{array}{l} \widehat A + \widehat B + \widehat C + \widehat D = {360^0}\\{85^0} + x + {65^0} + {75^0} = {360^0}\\x = {360^0} - {85^0} - {65^0} - {75^0} = {135^0}\end{array}\)
Trong Hình 4.23 có \(\widehat {DME} = \widehat {MEF}\) nên EM là tia phân giác của \(\widehat {{\rm{DEF}}}\).
Áp dụng tính chất đường phân giác của tam giác, ta có:
\(\dfrac{{E{\rm{D}}}}{{EF}} = \dfrac{{M{\rm{D}}}}{{MF}}\) hay \(\dfrac{{4,5}}{x} = \dfrac{{3,5}}{{5,6}}\)
Suy ra: \(x = \dfrac{{5,6.4,5}}{{3,5}} = 7,2\)(đvđd)
Vậy x = 7,2 (đvđd).
Đồ thị hàm số là tập hợp các điểm có tọa độ \(\left( { - 2;2} \right);\left( { - 1;1} \right);\left( {0;0} \right);\left( {1; - 1} \right);\left( {2; - 2} \right)\) được vẽ trên mặt phẳng tọa độ như hình dưới đây:
Xét \(\Delta MEF\) và \(\Delta MAB\) có:
\(\widehat M\) chung
\(\widehat {MFE} = \widehat {MBA} = 90^\circ \)
Do đó, \(\Delta MEF\backsim\Delta MAB\) (g.g)
Vì nên \(\frac{{MF}}{{MB}} = \frac{{FE}}{{AB}}\) (các cặp cạnh tương ứng)
Thay số, \(\frac{2}{{20}} = \frac{{1,65}}{{AB}} \Rightarrow AB = \frac{{1,65.20}}{2} = 16,5\)
Vậy tòa tháp cao 16,5m.
Trong Hình 4.30 có \(\widehat {DEM} = \widehat {EMN}\) mà hai góc này ở vị trí so le trong nên MN // DE.
Áp dụng định lí Thalès vào tam giác DEF có MN // DE, ta có:
\(\dfrac{{MF}}{{M{\rm{D}}}} = \dfrac{{NF}}{{NE}}\) hay \(\dfrac{2}{3} = \dfrac{x}{6}\)
Suy ra \(x = \dfrac{{2.6}}{3} = 4\) (đvđd).
Vậy x = 4 (đvđd).
Những hình khối có dạng ở hình 11 được gọi là hình chóp tứ giác đều.
a) \(3\left(x+1\right)+5x=0\)
\(\Leftrightarrow3x+3+5x=0\)
\(\Leftrightarrow8x=-3\)
\(\Leftrightarrow x=-\dfrac{3}{8}\)
b) \(4x^2-1-\left(2x+1\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(2x-1\right)-\left(2x+1\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(2x-1-1\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(2x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=-1\\2x=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=1\end{matrix}\right.\)
c) \(\left(x+1\right)^2+x^2-1=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+1+x-1\right)=0\)
\(\Leftrightarrow\left(x+1\right)2x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
d) \(\left(x+2\right)\left(x-2\right)+x\left(x-3\right)-2x^2=8\)
\(\Leftrightarrow x^2-4+x^2-3x-2x^2=8\)
\(\Leftrightarrow-3x-4=8\)
\(\Leftrightarrow-3x=8+4\)
\(\Leftrightarrow-3x=12\)
\(\Leftrightarrow x=-4\)