Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: AHD = 1/2( sđAD + sđBE)
BKE = 1/2( sđDC + sđBE )
Mà : sđAD = sđDC ( BD là tia phân giác )
=> AHD = BKE
Ta có ADH = 1/2 (sđAD + sđBE)
BKE = 1/2 (sđDC + sđBE)
Mà DC=AD
⇒ ADH=BKE
Giải:
Nối M và K
Xét (O) có: \(\hat{AMK}\) là góc nội tiếp chắn cung nhỏ AK
\(\hat{KAB}\) là góc tạo bởi tia tiếp tuyến và dây cung chắn cung nhỏ AK
\(\Rightarrow\) \(\hat{AMK}\) = \(\hat{KAB}\) ( cùng = 1/2 cung nhỏ AK ) (1)
Xét (O') có : \(\hat{BMK}\) là góc nội tiếp chắn cung nhỏ BK
\(\hat{KBA}\) là góc tạo bởi tia tiếp tuyến và dây cung chắn cung nhỏ BK
\(\Rightarrow\) \(\hat{BMK}\) = \(\hat{KBA}\) ( cùng =1/2 cung nhỏ BK ) (2)
Từ (1) và (2) \(\Rightarrow\) \(\hat{AMK}\)+\(\hat{BMK}\)=\(\hat{KAB}\)+ \(\hat{KBA}\)
\(\Leftrightarrow\) \(\hat{AMB}\) = 50° = \(\hat{KAB}\) + \(\hat{KBA}\)
Xét △ KAB có: \(\hat{AKB}\) +(\(\hat{KAB}\) + \(\hat{KBA}\) )= 180° ( Tổng ba góc trong một tam giác)
\(\Leftrightarrow\) \(\hat{AKB}\) + 50° = 180°
\(\Leftrightarrow\)\(\hat{AKB}\) = 180°-50°
\(\Leftrightarrow\)\(\hat{AKB}\) = 130°
Vậy \(\hat{AKB}\) có số đo là 130°
Bài làm :
Ta có góc ABC là góc nt = 1/2 số đo góc ở tâm
=> Góc AOC = 50.2 = 100 o
Vậy số đo cung nhỏ AC là 100 độ
a) Xét tam giác ABC vuông tại B có: AB=AC.sinC=8.sin540≈6,472(cm)AB=AC.sinC=8.sin540≈6,472(cm)
b) Vẽ CD. Xét tam giác ACH có: AH=AC.sinC=8.sin740≈7,690(cm)AH=AC.sinC=8.sin740≈7,690(cm)
Xét tam giác AHD vuông tại H có: sinD=AHAD≈7,6909,6≈0,8010⇒ˆD=530sinD=AHAD≈7,6909,6≈0,8010⇒D^=530
Nhận xét: Để tính được số đo của góc D, ta đã vẽ AH ⊥ CD. Mục đích của việc vẽ đường phụ này là để tạo ra tam giác vuông biết độ dài hai cạnh và có góc D là một góc nhọn của nó. Từ đó tính được một tỉ số lượng giác của góc D rồi suy ra số đo của góc D.
\(cos\dfrac{\alpha}{2}=\dfrac{0,8}{2,34}\Rightarrow\dfrac{\alpha}{2}\approx70^0\Rightarrow\alpha\approx140^0\)
bn gì đó ơi....chỉ rõ cho mk cái chỗ mà cos\(\dfrac{a}{2}=\dfrac{0,8}{2,34}\Rightarrow\dfrac{a}{2}\approx70\)đc hông z......
B O C D A E M 20