Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Nối M và K
Xét (O) có: \(\hat{AMK}\) là góc nội tiếp chắn cung nhỏ AK
\(\hat{KAB}\) là góc tạo bởi tia tiếp tuyến và dây cung chắn cung nhỏ AK
\(\Rightarrow\) \(\hat{AMK}\) = \(\hat{KAB}\) ( cùng = 1/2 cung nhỏ AK ) (1)
Xét (O') có : \(\hat{BMK}\) là góc nội tiếp chắn cung nhỏ BK
\(\hat{KBA}\) là góc tạo bởi tia tiếp tuyến và dây cung chắn cung nhỏ BK
\(\Rightarrow\) \(\hat{BMK}\) = \(\hat{KBA}\) ( cùng =1/2 cung nhỏ BK ) (2)
Từ (1) và (2) \(\Rightarrow\) \(\hat{AMK}\)+\(\hat{BMK}\)=\(\hat{KAB}\)+ \(\hat{KBA}\)
\(\Leftrightarrow\) \(\hat{AMB}\) = 50° = \(\hat{KAB}\) + \(\hat{KBA}\)
Xét △ KAB có: \(\hat{AKB}\) +(\(\hat{KAB}\) + \(\hat{KBA}\) )= 180° ( Tổng ba góc trong một tam giác)
\(\Leftrightarrow\) \(\hat{AKB}\) + 50° = 180°
\(\Leftrightarrow\)\(\hat{AKB}\) = 180°-50°
\(\Leftrightarrow\)\(\hat{AKB}\) = 130°
Vậy \(\hat{AKB}\) có số đo là 130°
ta có: AHD = 1/2( sđAD + sđBE)
BKE = 1/2( sđDC + sđBE )
Mà : sđAD = sđDC ( BD là tia phân giác )
=> AHD = BKE
Ta có ADH = 1/2 (sđAD + sđBE)
BKE = 1/2 (sđDC + sđBE)
Mà DC=AD
⇒ ADH=BKE
Giải:
Độ dài l của cung hình quạt tròn bán kính 6 cm bằng chu vi đáy của hình nón:
l = 2 π.2 = 4 π
Áp dụng công thức tính độ dài cung trong x0 ta có:
l =
Suy ra: x0 = = 1200
Bài làm :
Ta có góc ABC là góc nt = 1/2 số đo góc ở tâm
=> Góc AOC = 50.2 = 100 o
Vậy số đo cung nhỏ AC là 100 độ