Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(3x-2\right)^2-\left(3x-5\right)\left(3x+2\right)=11\)
\(\Leftrightarrow\left(9x^2-12x+4\right)-\left(9x^2+6x-15x-10\right)=11\)
\(\Leftrightarrow9x^2-12x+4-9x^2-6x+15x+10=11\)
\(\Leftrightarrow-3x+3=0\)
\(\Leftrightarrow-3x=-3\)
\(\Leftrightarrow x=1\)
Vậy \(S=\left\{1\right\}\)
b) \(\left(4x-3\right)^2-\left(4x-5\right)\left(4x+5\right)=32\)
\(\Leftrightarrow\left(16x^2-24x+9\right)-\left(16x^2-25\right)=32\)
\(\Leftrightarrow16x^2-24x+9-16x^2+25=32\)
\(\Leftrightarrow-24x+2=0\)
\(\Leftrightarrow-24x=-2\)
\(\Leftrightarrow x=\dfrac{1}{12}\)
Vậy \(S=\left\{\dfrac{1}{12}\right\}\)
c) \(\left(5x-2\right)^2-\left(5x+3\right)\left(5x-5\right)=1\)
\(\Leftrightarrow\left(25x^2-20x+4\right)-\left(25x^2-25x+15x-15\right)=1\)
\(\Leftrightarrow25x^2-20x+4-25x^2+25x-15x+15=1\)
\(\Leftrightarrow-10x+18=0\)
\(\Leftrightarrow-10x=-18\)
\(\Leftrightarrow x=\dfrac{9}{5}\)
Vậy \(S=\left\{\dfrac{9}{5}\right\}\)
d) \(\left(x-4\right)^2-\left(x-7\right)\left(2x-3\right)=5-x^2\)
\(\Leftrightarrow\left(x^2-8x+16\right)-\left(2x^2-3x-14x+21\right)=5-x^2\)
\(\Leftrightarrow x^2-8x+16-2x^2+3x+14x-21=5-x^2\)
\(\Leftrightarrow x^2-8x+16-2x^2+3x+14x-21-5+x^2=0\)
\(\Leftrightarrow9x-10=0\)
\(\Leftrightarrow9x=10\)
\(\Leftrightarrow x=\dfrac{10}{9}\)
Vậy \(S=\left\{\dfrac{10}{9}\right\}\)
Cho mk hỏi vs ! Câu a bn rút gọn hay bn lm kiểu j mak tự nhiên 11 lại lôi đâu ra số 0 vậy ? Gt hộ mk vs, mk vẫn chưa hiểu cách bn lm ở câu a cho lắm !
1,
a,\(2x\left(3x^2-5x+3\right)\)
\(=6x^3-10x^2+6x\)
b,\(-2x\left(x^2+5x-3\right)\)
\(=-2x^3-10x^2+6x\)
c,\(-\dfrac{1}{2}x\left(2x^3-4x+3\right)\)
\(=-x^4+2x^2-\dfrac{3}{2}x\)
Bài 2:
a) \(\left(2x-1\right)\left(x^2-5-4\right)\)
\(=\left(2x-1\right)\left(x^2-9\right)\)
\(=2x^3-18x-x^2+9\)
b) \(-\left(5x-4\right)\left(2x+3\right)\)
\(=-\left(10x^2+15x-8x-12\right)\)
\(=-10x^2-7x+12\)
c) \(\left(2x-y\right)\left(4x^2-2xy+y^2\right)\)
\(=8x^3-y^3\)
a/ \(\left|\frac{3x-6}{1-2x}\right|=x-2\) \(\left(x\ne\frac{1}{2}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{3x-6}{1-2x}=x-2\\\frac{3x-6}{1-2x}=2-x\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}3x-6=\left(x-2\right)\left(1-2x\right)\\3x-6=\left(2-x\right)\left(1-2x\right)\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}3x-6=x+4x-2-2x^2\\3x-6=-x-4x+2+2x^2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}-2x^2+2x+4=0\\2x^2-8x+8=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\\x=2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
KL: .............
b/ Tương tự
Bài 3:
a) \(\left(x-6\right).\left(2x-5\right).\left(3x+9\right)=0\)
\(\Leftrightarrow\left(x-6\right).\left(2x-5\right).3.\left(x+3\right)=0\)
Vì \(3\ne0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\2x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\2x=5\\x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\frac{5}{2}\\x=-3\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{6;\frac{5}{2};-3\right\}.\)
b) \(2x.\left(x-3\right)+5.\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right).\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{3;-\frac{5}{2}\right\}.\)
c) \(\left(x^2-4\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x^2-2^2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2-3+2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2;\frac{1}{3}\right\}.\)
Chúc bạn học tốt!
b) \(\left(x+2\right)\left(x+3\right)-\left(x-2\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+3\right)+\left(x+2\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+3+x+5\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(2x+8\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+2=0\\2x+8=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\x=-4\end{matrix}\right.\)
Bài 1:
a) \(3x^2-2x(5+1,5x)+10=3x^2-(10x+3x^2)+10\)
\(=10-10x=10(1-x)\)
b) \(7x(4y-x)+4y(y-7x)-2(2y^2-3,5x)\)
\(=28xy-7x^2+(4y^2-28xy)-(4y^2-7x)\)
\(=-7x^2+7x=7x(1-x)\)
c)
\(\left\{2x-3(x-1)-5[x-4(3-2x)+10]\right\}.(-2x)\)
\(\left\{2x-(3x-3)-5[x-(12-8x)+10]\right\}(-2x)\)
\(=\left\{3-x-5[9x-2]\right\}(-2x)\)
\(=\left\{3-x-45x+10\right\}(-2x)=(13-46x)(-2x)=2x(46x-13)\)
Bài 2:
a) \(3(2x-1)-5(x-3)+6(3x-4)=24\)
\(\Leftrightarrow (6x-3)-(5x-15)+(18x-24)=24\)
\(\Leftrightarrow 19x-12=24\Rightarrow 19x=36\Rightarrow x=\frac{36}{19}\)
b)
\(\Leftrightarrow 2x^2+3(x^2-1)-5x(x+1)=0\)
\(\Leftrightarrow 2x^2+3x^2-3-5x^2-5x=0\)
\(\Leftrightarrow -5x-3=0\Rightarrow x=-\frac{3}{5}\)
\(2x^2+3(x^2-1)=5x(x+1)\)
Bài 1:
a. \(\left(x-3\right)\left(x+7\right)-\left(x+5\right)\left(x-1\right)\)
\(=x^2+7x-3x-21-\left(x^2-x+5x-5\right)\)
\(=x^2 +7x-3x-21-x^2+x-5x+5\)
\(=-16\)
b. \(x^2\left(x-4\right)\left(x+4\right)-\left(x^2+1\right)\left(x^2-1\right)\)
\(=x^2\left(x^2-16\right)-\left(x^4-1\right)\)
\(=x^4-16x^2-x^4+1\)
\(=-16x^2+1\)
Bài 2:
a. \(x^2-25-\left(x+5\right)=0\)
\(\left(x-5\right)\left(x+5\right)-1\left(x-5\right)=0\)
\(\left(x+4\right)\left(x-5\right)=0\)
* \(x+4=0\)
\(x=-4\)
* \(x-5=0\)
\(x=5\)
b. \(3x\left(x-2\right)-x+2=0\)
\(3x\left(x-2\right)-1\left(x-2\right)=0\)
\(\left(3x-1\right)\left(x-2\right)=0\)
* \(3x-1=0\)
\(3x=1\)
\(x=\frac{1}{3}\)
* \(x-2=0\)
\(x=2\)
c. \(x\left(x-4\right)-2x+8=0\)
\(x\left(x-4\right)-\left(2x-2.4\right)=0\)
\(x\left(x-4\right)-2\left(x-4\right)=0\)
\(\left(x-2\right)\left(x-4\right)=0\)
* \(x-2=0\)
\(x=2\)
* \(x-4=0\)
\(x=4\)
Bài 2:
a: \(=6x^2+30x+x+5-\left(6x^2-3x-10x+5\right)\)
\(=6x^2+31x+5-6x^2+13x-5=18x⋮6\)
b: \(=x^3+2x^2+3x^2+6x-x-2-x^3+2\)
\(=5x^2+5x=5x\left(x+1\right)⋮2\)
\(a,x^2\left(x-2x^3\right)=x^3-3x^5\)
\(b,\left(x^2+1\right)\left(5-x\right)=5x^2-x^3+5-x\)
\(c,\left(x-2\right)\left(x^2+3x-4\right)=x^3+3x^2-4x-2x^2-6x+8\)
\(=x^3+x^2-10x+8\)
\(d,\left(x-2\right)\left(x-x^2+4\right)=x^2-x^3+4x-2x+2x^2-8\)
\(=x^3+3x^2+2x-8\)