Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(3x^2-2x(5+1,5x)+10=3x^2-(10x+3x^2)+10\)
\(=10-10x=10(1-x)\)
b) \(7x(4y-x)+4y(y-7x)-2(2y^2-3,5x)\)
\(=28xy-7x^2+(4y^2-28xy)-(4y^2-7x)\)
\(=-7x^2+7x=7x(1-x)\)
c)
\(\left\{2x-3(x-1)-5[x-4(3-2x)+10]\right\}.(-2x)\)
\(\left\{2x-(3x-3)-5[x-(12-8x)+10]\right\}(-2x)\)
\(=\left\{3-x-5[9x-2]\right\}(-2x)\)
\(=\left\{3-x-45x+10\right\}(-2x)=(13-46x)(-2x)=2x(46x-13)\)
Bài 2:
a) \(3(2x-1)-5(x-3)+6(3x-4)=24\)
\(\Leftrightarrow (6x-3)-(5x-15)+(18x-24)=24\)
\(\Leftrightarrow 19x-12=24\Rightarrow 19x=36\Rightarrow x=\frac{36}{19}\)
b)
\(\Leftrightarrow 2x^2+3(x^2-1)-5x(x+1)=0\)
\(\Leftrightarrow 2x^2+3x^2-3-5x^2-5x=0\)
\(\Leftrightarrow -5x-3=0\Rightarrow x=-\frac{3}{5}\)
\(2x^2+3(x^2-1)=5x(x+1)\)
2/Theo đề ta có:
\(x^2+y^2=a^2+b^2\)
\(\Leftrightarrow\left(x-a\right)\left(x+a\right)=\left(b-y\right)\left(b+y\right)\)(1)
Lại có: \(x-a=b-y\) Thay vào (1) đc
\(\left(x-a\right)\left(x+a\right)-\left(x-a\right)\left(b+y\right)=0\)
\(\Leftrightarrow\left(x-a\right)\left(x+a-b-y\right)=0\Rightarrow x=a\)(2)
Tương tự ta cũng có:
\(\left(b-y\right)\left(x+a\right)-\left(b-y\right)\left(b+y\right)=0\)
\(\Leftrightarrow\left(b-y\right)\left(x+a-b-y\right)=0\Rightarrow b=y\)(3)
(2) và (3) có ĐPCM
Bạn tham khảo câu trả lời ở đây nhé:
http://pitago.vn/question/cho-a-b-c-doi-mot-khac-nhau-thoa-man-abacbc-1-tinh-gia-tr-40688.html
1,
a,\(2x\left(3x^2-5x+3\right)\)
\(=6x^3-10x^2+6x\)
b,\(-2x\left(x^2+5x-3\right)\)
\(=-2x^3-10x^2+6x\)
c,\(-\dfrac{1}{2}x\left(2x^3-4x+3\right)\)
\(=-x^4+2x^2-\dfrac{3}{2}x\)
Bài 2:
a) \(\left(2x-1\right)\left(x^2-5-4\right)\)
\(=\left(2x-1\right)\left(x^2-9\right)\)
\(=2x^3-18x-x^2+9\)
b) \(-\left(5x-4\right)\left(2x+3\right)\)
\(=-\left(10x^2+15x-8x-12\right)\)
\(=-10x^2-7x+12\)
c) \(\left(2x-y\right)\left(4x^2-2xy+y^2\right)\)
\(=8x^3-y^3\)
\(Tacó:\)
\(\left\{{}\begin{matrix}\left|2x+1\right|\ge0\\\left|3x+2\right|\ge0\\\left|4x+3\right|\ge0\end{matrix}\right.\Rightarrow\left|2x+1\right|+\left|3x+2\right|+\left|4x+3\right|\ge0\Rightarrow x-1\ge0\Rightarrow x\ge1\Rightarrow\left\{{}\begin{matrix}2x+1>0\\3x+2>0\\4x+3>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left|2x+1\right|=2x+1\\\left|3x+2\right|=3x+2\\\left|4x+3\right|=4x+3\end{matrix}\right.\Rightarrow2x+1+3x+2+4x+3=x-1\Leftrightarrow9x+6=x-1\Leftrightarrow8x=-7\left(\text{vô lí}\right)\)
\(Vậy:x\in\varnothing\)
\(2,\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\Leftrightarrow\left(ax\right)^2+\left(ay\right)^2+\left(bx\right)^2+\left(by\right)^2\ge\left(ax\right)^2+2axby+\left(by\right)^2\Leftrightarrow\left(ay\right)^2+\left(bx\right)^2\ge2axby\Leftrightarrow\left(ay\right)^2-2axby+\left(bx\right)^2\ge0\Leftrightarrow\left(ay-bx\right)^2\ge0\left(\text{luôn đúng}\right).\text{Vậy BĐT đã được chứng minh}\)
Bài 3.a) ( x + 2)( x + 3)( x + 4)(x + 5) = 24
⇔ ( x2 + 7x + 10 )( x2 + 7x + 12) = 24
Đặt : x2 + 7x + 11 = t , ta có :
( t - 1)( t + 1) = 24
⇔ t2 - 25 = 0
⇔ t = 5 hoặc t = -5
+) Với : t = 5 , ta có :
x2 + 7x + 11 = 5
⇔ x2 + x + 6x + 6 = 0
⇔ x( x + 1) + 6( x + 1) = 0
⇔ ( x + 1)( x + 6) = 0
⇔ x = -1 hoặc x = - 6
+) x2 + 7x + 11 = - 5
⇔ x2 + 7x + 16 = 0
Ta thấy : x2 + 2.\(\dfrac{7}{2}x+\dfrac{49}{4}+16-\dfrac{49}{4}=\left(x+\dfrac{7}{x}\right)^2+\dfrac{15}{4}>0\)
⇒ Phương trình vô nghiệm
KL.......
b) ( 4x + 1)( 12x - 1)( 3x + 2)( x + 1) = 4
⇔ 3( 4x + 1)( 12x - 1)4( 3x + 2)12( x + 1) = 4.4.3.12
⇔ ( 12x + 3)( 12x - 1)( 12x + 8)( 12x + 12) = 576
⇔ ( 144x2 + 132x + 24)( 144x2 + + 132x - 12) = 576
Đặt : 144x2 + 132x + 24 = t , ta có :
t( t - 36) = 576
⇔ t2 - 36t - 576 = 0
⇔ t2 + 12t - 48t - 576 = 0
⇔ t( t + 12) - 48( t + 12) = 0
⇔ ( t + 12)( t - 48) = 0
Đến đây dễ rùi , bạn tự giải ra nhé.
Bài 2:
a: \(=6x^2+30x+x+5-\left(6x^2-3x-10x+5\right)\)
\(=6x^2+31x+5-6x^2+13x-5=18x⋮6\)
b: \(=x^3+2x^2+3x^2+6x-x-2-x^3+2\)
\(=5x^2+5x=5x\left(x+1\right)⋮2\)