Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. f(x) = g(x) - h(x)
= 4x2 + 3x + 1 - (3x2 - 2x - 3)
= 4x2 + 3x + 1 - 3x2 + 2x + 3
= (4x2 - 3x2) + (3x + 2x) + (1 + 3)
= x2 + 5x + 4
b. Xét đa thức f(x) = x2 + 5x + 4
f(-4) = (-4)2 + 5 . (-4) + 4 = 0
Vậy x = -4 là nghiệm của f(x)
c. Cho f(x) = 0
\(\Rightarrow\) x2 + 5x + 4 = 0
\(\Rightarrow\) x2 + x + 4x + 4 = 0
\(\Rightarrow\) x (x + 1) + 4 (x + 1) = 0
\(\Rightarrow\) (x + 1) (x + 4) = 0
\(\Rightarrow\orbr{\begin{cases}x+1=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=-4\end{cases}}\)
Vậy f(x) có tập nghiệm là \(x\in\left\{-4;-1\right\}\).
f(x)=x^2+5x+4 (x+1)(x+4)=0 \(\hept{\begin{cases}x=-1\\x=-4\end{cases}}\) s={-1,-4}
Bài 1 :
\(M+N\)
\(=\left(2xy^2-3x+12\right)+\left(-xy^2-3\right)\)
\(=2xy^2-3x+12-xy^2-3\)
\(=\left(2xy^2-xy^2\right)-3x+\left(12-3\right)\)
\(=xy^2-3x+9\)
\(C\left(x\right)=\frac{4x-3}{6}-\frac{5-3x}{3}+\frac{1}{3}\)
\(\frac{4x-3}{6}-\frac{5-3x}{3}+\frac{1}{3}=0\)
\(4x-3-2\left(5-3x\right)+2=0\)
\(4x-1-2\left(5-3x\right)=0\)
\(4x-1-10+6x=0\)
\(10x-11=0\)
\(10x=0+11\)
\(10x=11\)
\(x=\frac{11}{10}\)
a)
\(P\left(x\right)=2x^3+x^2-3x-1+x^3-3x^2-5x+1\)
\(P\left(x\right)=\left(2x^3+x^3\right)+\left(x^2-3x^2\right)-\left(3x+5x\right)-\left(1-1\right)\)
\(P\left(x\right)=3x^3-2x^2-8x\)
tương tự làm nốt
b) Tìm nghiệm thì đặt bằng 0 rồi tính là OK
Học tốt~
\(h\left(x\right)+f\left(x\right)-g\left(x\right)=-2x^2-x+9\)
\(h\left(x\right)+\left(-5x^4+x^2-2x+6\right)-\left(-5x^4+x^3+3x^2-3\right)=-2x^2-x+9\)
\(h\left(x\right)-5x^4+x^2-2x+6+5x^4-x^3-3x^2-3=-2x^2-x+9\)
\(h\left(x\right)-\left(5x^4-5x^4\right)+\left(x^2-3x^2\right)-x^3-2x+\left(6-3\right)=-2x^2-x+9\)
\(h\left(x\right)-0-2x^2-x^3-2x+3=-2x^2-x+9\)
\(h\left(x\right)-x^3-2x^2-2x+3=-2x^2-x+9\)
\(h\left(x\right)+\left(-x^3-2x^2-2x+3\right)=-2x^2-x+9\)
\(h\left(x\right)=\left(-2x^2-x+9\right)-\left(-x^3-2x^2-2x+3\right)\)
\(h\left(x\right)=-2x^2-x+9+x^3+2x^2+2x-3\)
\(h\left(x\right)=\left(-2x^2+2x^2\right)-\left(x-2x\right)+\left(9-3\right)+x^3\)
\(h\left(x\right)=0+x+6+x^3\)
\(h\left(x\right)=x^3+x+6\)
d) Ta có : h(x) + f(x) - g(x) = -2x2 - x + 9
<=> h(x) = -2x2 - x + 9 - f(x) + g(x)
<=> h(x) = -2x2 - x + 9 - x2 + 2x + 5x4 - 6 + x3 - 5x4 + 3x2 - 3
<=> h(x) = x3 + x.
Vậy h(x) = x3 + x
\(f\left(x\right)-g\left(x\right)=5x^2-2x+5-\left(5x^2-6x-\frac{1}{3}\right)\)
= \(5x^2-2x+5-5x^2+6x+\frac{1}{3}\)
=\(4x+\frac{16}{3}\)
a) P(x)=3x2 - 5x3 +x + 2x3 - x - 4 + 3x3 + x4 + 7
= 3x2 - 5x3 + 2x3 + 3x3 + x - x + x4 - 4 + 7
= 3x2 + 0 + 0 + x4 + 3
= 3x2 + x4 + 3
b) Vì x2 > hoặc = 0 vs mọi x thuộc R
=)) 3x2 > hoặc = 3 vs mọi x thuộc R
=)) 3x2 + x4 + 3 > hoặc = x4 + 6 vs mọi x thuộc R
=)) 3x2 + x4 + 3 > 0
Vậy đa thức 3x2 + x4 + 3 vô nghiệm
2 thieu đề
Bạn Phan Cả Phát làm sai rồi, vì 3x2 có 2 trường hợp: 3x2 > 0 hoặc 3x2 = 0 vì x2 có thể = 0 được. VÌ vậy nếu bạn bảo 3x2 >/= 3 là sai
Xét H(x) = 0
hay -3x2 + (-1) = 0
-3x2 = 1
x2 = \(\frac{1}{3}\) ( vô lí vì x2 > = 0 với mọi x, mà \(\frac{1}{3}\) < 0)
Suy ra -3x2 + (-1) vô nghiệm hay H(x) vô nghiệm (đpcm)