K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2021

a, \(f\left(x\right)=2x^2\left(x-1\right)-5\left(x+2\right)-2x\left(x-2\right)\)

\(=2x^3-2x^2-5x-10-2x^2+4x=2x^3-4x^2-x-10\)

b, \(g\left(x\right)=x^2\left(2x-3\right)-x\left(x+1\right)-\left(3x-2\right)\)

\(=2x^3-3x^2-x^2-x-3x+2=2x^3+2-4x^2-4x\)

b, Ta có : \(H\left(x\right)=F\left(x\right)-G\left(x\right)=2x^3-4x^2-x-10-2x^3+4x^2+4x-2\)

\(\Leftrightarrow3x-12=0\Leftrightarrow x=4\)

2 tháng 4 2019

Câu 1: Tìm nghiệm của các đa thức:

1. P(x) = 2x -3

⇒2x-3=0

↔2x=3

↔x=\(\frac{3}{2}\)

2. Q(x) = −12−12x + 5

↔-12-12x+5=0

↔-12x=0+12-5

↔-12x=7

↔x=\(\frac{7}{-12}\)

3. R(x) = 2323x + 1515

↔2323x+1515=0

↔2323x=-1515

↔x=\(\frac{-1515}{2323}\)

4. A(x) = 1313x + 1

1313x + 1=0

↔1313x=-1

↔x=\(\frac{-1}{1313}\)

5. B(x) = −34−34x + 1313

−34−34x + 1313=0

↔-34x=0+34-1313

↔-34x=-1279

↔x=\(\frac{1279}{34}\)

Câu 2: Chứng minh rằng: đa thức x2 - 6x + 8 có hai nghiệm số là 2 và 4

Giải :cho x2 - 6x + 8 là f(x)

có:f(2)=22 - 6.2 + 8

=4-12+8

=0⇒x=2 là nghiệm của f(x)

có:f(4)=42 - 6.4 + 8

=16-24+8

=0⇒x=4 là nghiệm của f(x)

Câu 3: Tìm nghiệm của các đa thức sau:

1.⇒ (2x - 4) (x + 1)=0

↔2x-4=0⇒2x=4⇒x=2

x+1=0⇒x=-1

-kết luận:x=2 vàx=-1 là nghiệm của A(x)

2. ⇒(-5x + 2) (x-7)=0

↔-5x + 2=0⇒-5x=-2⇒

x-7=0⇒x=7

-kết luận:x=\(\frac{2}{5}\)và x=7 là nghiệm của B(x)

3.⇒ (4x - 1) (2x + 3)=0

⇒4x-1=0↔4x=1⇒x=\(\frac{1}{4}\)

2x+3=0↔2x=3⇒x=\(\frac{3}{2}\)

-kết luận:x=\(\frac{1}{4}\)và x=\(\frac{3}{2}\) là nghiệm của C(x)

4. ⇒ x2- 5x=0

↔x.x-5.x=0

↔x.(x-5)=0

↔x=0

x-5=0⇒x=5

-kết luận:x=0 và x=5 là nghiệm của D(x)

5. ⇒-4x2 + 8x=0

↔-4.x.x+8.x=0

⇒x.(-4x+x)=0

⇒x=0

-4x+x=0⇒-3x=0⇒x=0

-kết luận:x=0 là nghiệm của E(x)

Câu 4: Tính giá trị của:

1. f(x) = -3x4 + 5x3 + 2x2 - 7x + 7 tại x = 1; 0; 2

-X=1⇒f(x) =4

-X=0⇒f(x) =7

-X=2⇒f(x) =89

2. g(x) = x4 - 5x3 + 7x2 + 15x + 2 tại x = -1; 0; 1; 2

-X=-1⇒G(x) =-14

-X=0⇒G(x) =2

-X=1⇒G(x) =20

-X=2⇒G(x) =43

11 tháng 4 2019

Bài 1 :

\(M+N\)

\(=\left(2xy^2-3x+12\right)+\left(-xy^2-3\right)\)

\(=2xy^2-3x+12-xy^2-3\)

\(=\left(2xy^2-xy^2\right)-3x+\left(12-3\right)\)

\(=xy^2-3x+9\)

11 tháng 4 2019

gải hộ mình bài 2

1 tháng 5 2021

a, mình bổ sung cho đề là \(5x^2+6x-\frac{1}{3}\)( hoặc là trừ thì cũng làm tương tự :) 

Ta có : \(f\left(x\right)+g\left(x\right)\)hay \(5x^2-2x+5+5x^2+6x-\frac{1}{3}=10x^2+4x+\frac{14}{3}\)

b, Ta có : \(f\left(x\right)-g\left(x\right)\)hay 

\(5x^2-2x+5-5x^2-6x+\frac{1}{3}=-8x+\frac{16}{3}\)

c, Đặt \(-8x+\frac{16}{3}=0\Leftrightarrow-8\left(x-\frac{2}{3}\right)=0\Leftrightarrow x=\frac{2}{3}\)

Vậy x = 2/3 là nghiệm đa thức trên 

2 tháng 5 2021

a, Ta có : \(f\left(x\right)+g\left(x\right)\)hay \(5x^2-2x+5+5x^2-6x-\frac{1}{3}=10x^2-8x+\frac{14}{3}\)

b, Ta có : \(f\left(x\right)-g\left(x\right)\)hay \(5x^2-2x+5-5x^2+6x+\frac{1}{3}=4x+\frac{16}{3}\)

c, Đặt \(f\left(x\right)-g\left(x\right)=0\)hay \(4x+\frac{16}{3}=0\)

\(\Leftrightarrow4x=-\frac{16}{3}\Leftrightarrow x=-\frac{16}{8}=-2\)

6 tháng 8 2019

\(C\left(x\right)=\frac{4x-3}{6}-\frac{5-3x}{3}+\frac{1}{3}\)

\(\frac{4x-3}{6}-\frac{5-3x}{3}+\frac{1}{3}=0\)

\(4x-3-2\left(5-3x\right)+2=0\)

\(4x-1-2\left(5-3x\right)=0\)

\(4x-1-10+6x=0\)

\(10x-11=0\)

\(10x=0+11\)

\(10x=11\)

\(x=\frac{11}{10}\)

12 tháng 4 2019

\(h\left(x\right)+f\left(x\right)-g\left(x\right)=-2x^2-x+9\)

\(h\left(x\right)+\left(-5x^4+x^2-2x+6\right)-\left(-5x^4+x^3+3x^2-3\right)=-2x^2-x+9\)

\(h\left(x\right)-5x^4+x^2-2x+6+5x^4-x^3-3x^2-3=-2x^2-x+9\)

\(h\left(x\right)-\left(5x^4-5x^4\right)+\left(x^2-3x^2\right)-x^3-2x+\left(6-3\right)=-2x^2-x+9\)

\(h\left(x\right)-0-2x^2-x^3-2x+3=-2x^2-x+9\)

\(h\left(x\right)-x^3-2x^2-2x+3=-2x^2-x+9\)

\(h\left(x\right)+\left(-x^3-2x^2-2x+3\right)=-2x^2-x+9\)

\(h\left(x\right)=\left(-2x^2-x+9\right)-\left(-x^3-2x^2-2x+3\right)\)

\(h\left(x\right)=-2x^2-x+9+x^3+2x^2+2x-3\)

\(h\left(x\right)=\left(-2x^2+2x^2\right)-\left(x-2x\right)+\left(9-3\right)+x^3\)

\(h\left(x\right)=0+x+6+x^3\)

\(h\left(x\right)=x^3+x+6\)

12 tháng 4 2019

d) Ta có : h(x) + f(x) - g(x) = -2x2 - x + 9

         <=> h(x)                   = -2x2 - x + 9 - f(x) + g(x)

         <=> h(x)                   = -2x2 - x + 9 - x2 + 2x + 5x4 - 6 + x3 - 5x4 + 3x2 - 3

         <=> h(x)                   = x3 + x.

Vậy h(x) = x3 + x