K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2017

c 2 x 2 + a 2 - b 2 - c 2 x + b 2 = 0.

Δ = a 2 - b 2 - c 2 2  - 4 b 2 c 2

=  a 2 - b 2 - c 2 2  - 2 b c 2

= ( a 2 - b 2 - c 2  + 2bc)( a 2 - b 2 - c 2  - 2bc)

= [ a 2  - b - c 2 ][ a 2  - b + c 2 ]

= (a + b – c)(a – b + c)(a + b + c)(a – b – c)

Vì a; b; c là độ dài ba cạnh của một tam giác, dựa vào tính chất bất đẳng thức tam giác, ta có: |b – c| < a < b + c.

Do đó a + b + c > 0; a + b – c > 0; a – b + c > 0 còn a – b – c < 0.

Suy ra Δ < 0. Vậy phương trình đã cho vô nghiệm.

17 tháng 6 2016
a) ax^2 + bx + c = 0 Để phương trình thỏa mãn điều kiện có 2 nghiệm dương phân biệt. ∆ > 0 => b^2 - 4ac > 0 x1 + x2 = -b/a > 0 => b và a trái dấu x1.x2 = c/a > 0 => c và a cùng dấu Từ đó ta xét phương trình cx^2 + bx^2 + a = 0 ∆ = b^2 - 4ac >0 x3 + x4 = -b/c, vì a và c cùng dấu mà b và a trái dấu nên b và c trái dấu , vì vậy -b/c >0 x3.x4 = a/c, vì a và c cùng dấu nên a/c > 0 => phương trình cx^2 + cx + a có 2 nghiệm dương phân biệt x3 và x4 Vậy nếu phương trình ax^2 + bx + c = 0 có 2 nghiệm dương phân biệt thì phương trình cx^2 + bx + a = 0 cũng có 2 nghiệm dương phân biệt. b) Ta có, vì x1, x2, x3, x4 không âm, dùng cô si. x1 + x2 ≥ 2√( x1.x2 ) x3 + x4 ≥ 2√( x3x4 ) => x1 + x2 + x3 + x4 ≥ 2[ √( x1.x2 ) + √( x3x4 ) ] (#) Tiếp tục côsi cho 2 số không âm ta có √( x1.x2 ) + √( x3x4 ) ≥ 2√[√( x1.x2 )( x3.x4 ) ] (##) Theo a ta có x1.x2 = c/a x3.x4 = a/c => ( x1.x2 )( x3.x4 ) = 1 => 2√[√( x1.x2 )( x3.x4 ) ] = 2 Từ (#) và (##) ta có x1 + x2 + x3 + x4 ≥ 4
29 tháng 8 2020

x2+ax+1=0

Δ1=a²−4

x2+bx+1=0

Δ2=b²−4

Do ab≥4 nên có ít nhất 1 trong 2 số aa và b≥2

→ Hoặc Δ1=a²−4≥0

→ Hoặc Δ2=b²≥0

30 tháng 3 2018

tham khảo:https://www.vatgia.com/hoidap/5272/114204/toan-kho-lop-9-day--help.html

30 tháng 3 2018

ta có : ax=-(x^2+1) 
bx=-(x^2+1) 
abx=-(x^2+1) 
=>ax=bx=abx 
nếu x<>0 thi a=b=ab 
=> a=b=1 => 4/(ab)^2 -1/a^2-1/b^2=2 
nếu x=0 thi a=b=-1 
thì 4/(ab)^2 -1/a^2-1/b^2=2 
vậy 4/(ab)^2 -1/a^2-1/b^2=2

14 tháng 4 2020

gọi x1,x2 là hai nghiệm \(\Rightarrow x_1+x_2=-a\)  và \(x_1x_2=b+1\)

Ta có : \(a^2+b^2=\left[-\left(x_1+x_2\right)\right]^2+\left(x_1x_2-1\right)^2\)

\(\Rightarrow a^2+b^2=\left(x_1^2+x_2^2+2x_1x_2\right)+\left(x_1^2x_2^2-2x_1x_2+1\right)\)

\(\Rightarrow a^2+b^2=x_1^2+x_2^2+x_1^2x_2^2+1=\left(x_1^2+1\right)\left(x_2^2+1\right)\)là hợp số

28 tháng 9 2019

Hoặc b ≠ 0 hoặc c  ≠  0 phương trình có :

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9