Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề hơi khó hiểu nhưng vẫn biết cách làm !!!
Bài giải
a) +)Ta có : 4x - 7 = 12x +5
=> 4x - 12x = 5 + 7
<=> -8x = 12
<=> x =\(\frac{-12}{8}=\frac{-3}{2}\)
+)Ta có : 2x -1 = 6x + 5
<=> 2x - 6x = 5 + 1
<=> -4x = 6
<=> x = \(\frac{-6}{4}=\frac{-3}{2}\)
=> đây là cặp phương trình tương đương .
b) +) 7.( x - 10 ) =12
+) 14 . ( x - 10 ) = 24
<=> \(\frac{1}{2}.\left[14.\left(x-10\right)\right]=\frac{1}{2}.24\)
<=>7 . ( x - 10 ) = 12
=> Đây là 2 phương trình tương đương .
c) +) \(\frac{4}{x+3}-3=\frac{4}{x+3}+x.\left(ĐK:x\ne-3\right)\)
<=> \(\left(\frac{4}{x+3}-\frac{4}{x+3}\right)-3=x\)
<=> 0 - 3 = x
<=>x = 3
+) Với x= -3 => x + 3 = 0
=> ko thỏa mãn
=> ko xét tính tương đương
\(a,\)
\(2x^2-5x-7=0\)
\(\Leftrightarrow2x^2+2x-7x+7\)
\(\Leftrightarrow2x\left(x+1\right)-7\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2x-7=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{7}{2}\end{matrix}\right.\)
\(\left(2x+2\right)\left(x+\dfrac{7}{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+2=0\\x+\dfrac{7}{2}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{7}{2}\end{matrix}\right.\)
Vậy 2 pt ko tương đương
\(b,\left(2x-3\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\x^2-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\pm2\end{matrix}\right.\)
\(6x^2=24\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\)
Vậy 2 pt tương đương
a: 2x^2-5x-7=0
=>2x^2-7x+2x-7=0
=>(2x-7)(x+1)=0
=>x=7/2 hoặc x=-1
(2x+2)(x+7/2)=0
=>(x+1)(x+7/2)=0
=>x=-7/2 hoặc x=-1
=>Hai phương trình ko tương đương
b: (2x-3)(x^2-4)=0
=>(2x-3)(x-2)(x+2)=0
=>\(x\in\left\{\dfrac{3}{2};2;-2\right\}\)
6x^2=24
=>x^2=4
=>x=2 hoặc x=-2
=>Hai phương trình ko tương đương
`1-D`
Vì `7-2x=0` có dạng của ptr bậc nhất một ẩn `ax+b=0` trong đó `a=-2 \ne 0`
_________________________________________________
`2-C`
Vì `-x+1 < 0` có dạng bất ptr bậc nhất một ẩn `ax+b < 0` và `a=-1 \ne 0`
__________________________________________________
`3-A`
`4x-10 > x+2`
`<=>4x-x > 2+10`
`<=>3x > 12`
`<=>x > 4`
_________________________________________________
`4-C`
Vì tỉ số đồng dạng của `2` hai tam giác đồng dạng bằng tỉ số của `2` đường cao tương ứng của `2` tam giác đồng dạng đó