K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2018

A=2^101-1 chia chia cho 2

26 tháng 12 2015

chả có j mà ngồi cười như thật!

26 tháng 12 2015

Đặt \(A=6^{2n+1}+5^{n+2}\)

Với n=0

=>\(A\left(0\right)=6^{2.0+1}+5^{0+2}=6+5^2=31\) chia hết cho 31

Giả sử n=k thì A sẽ chia hết cho 31

=>\(A\left(k\right)=6^{2k+1}+5^{k+2}\) chia hết cho 31

Chứng minh n=k+1 cũng chia hết cho 31 hay \(A\left(k+1\right)=6^{2\left(k+1\right)+1}+5^{\left(k+1\right)+2}\) chia hết cho 31

 thật vậy

\(A\left(k+1\right)=6^{2k+3}+5^{k+3}=6^{2k+1}.36+5^{k+2}.5\)

\(=5\left(6^{2k+1}+5^{k+2}\right)+3.6^{2k+1}\)

Theo giả thiết ta có

\(6^{2k+1}+5^{k+2}\) chia hết cho 31

=>\(5\left(6^{2k+1}+5^{k+2}\right)\) chia hết cho 31

\(31.6^{2k+1}\) chia hết cho 31

=>\(5\left(6^{2k+1}+5^{k+2}\right)+31.6^{2k+1}\) chia hết cho 31

Hay \(A\left(k+1\right)\) chia hết cho 31

Vậy \(^{6^{2n+1}+5^{n+2}}\) chia hết cho 31

AH
Akai Haruma
Giáo viên
7 tháng 2 2022

Lời giải:
$n^3+3n^2+5n=n(n^2+3n+5)$

Cho $n=1$ thì $n^3+3n^2+5n=9\vdots 3$

Cho $n=2$ thì $n^3+3n^2+5n=30\vdots 3$....

Giả sử điều trên đúng với $n=k$. Tức là $k^3+3k^2+5k\vdots 3$

Ta cần cm đúng với $n=k+1$, tức là $(k+1)^3+3(k+1)^2+5(k+1)\vdots 3$

Thật vậy:

$(k+1)^3+3(k+1)^2+5(k+1)=k^3+3k^2+3k+1+5k+5+3(k+1)^2$

$=(k^3+3k^2+5k)+3(k+2)+3(k+1)^2\vdots 3$ do $k^3+3k^2+5k\vdots 3; 3(k+2)\vdots 3; 3(k+1)^2\vdots 3$

Vậy ta có đpcm.

28 tháng 10 2015

Kí hiệu đăng thức cần chứng minh là (*)

+) Với n = 1 thì 1 = \(\frac{1.\left(1+1\right)}{2}\) => (*) đúng

+) Giả sử (*) đúng với n = k , tức là: 1 + 2 + 3 + ....+ k = \(\frac{k\left(k+1\right)}{2}\)

Ta chứng minh (*) đúng với n = k+ 1, tức là: 1 + 2 + 3+ ...+ k + (k+1) = \(\frac{\left(k+1\right)\left(k+2\right)}{2}\)

Thật vậy, 1 + 2 + 3 + ....+ k + (k+1) = \(\frac{k\left(k+1\right)}{2}\) + (k+1) = \(\frac{k\left(k+1\right)+2\left(k+1\right)}{2}=\frac{\left(k+1\right)\left(k+2\right)}{2}\)

=> (*) đúng với n = k+ 1

Vậy.....

 

28 tháng 10 2015

1 + 2 + 3 + ... + n = (n + 1) + (n - 1 + 2) + ... (n:2 cặp)

= (n + 1) + (n + 1) + (n + 1) + ... + (n + 1) (n:2 cặp)

= (n + 1).n : 2 (đpcm)