Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= |x+1|+5
Vì |x+1| > hoặc =0 => |x+1|+5 > hoặc =5
Dấu = xảy ra <=> x+1=0=> x=-1
Vậy A đạt GTNN =5 <=> x=-1
Còn câu b bạn tự làm
ủng hộ nha
|x+1|> hoặc = 0 với mọi x
suy ra |x+1|+5 > hoặc = 5 với mọi x
suy ra Amin=5 khi |x+1|=0
suy ra x+1=0
suy ra x = -1
vậy gtnn của A là 5 khi x=-1
bn nên sử dụng dấu suy ra và dấu lớn hơn hoặc vì mình ko biết đánh dấu . câu b bn làm tương tự vì x^2 cũng lớn hơn hoặc bằng 0
\(A=|x+1|+5\ge5\forall x\)
=> Min A = 5 tại \(|x+1|=0\Rightarrow x=-1\)
\(B=\frac{x^2+15}{x^2+3}=1+\frac{12}{x^2+3}\)
Ta có: \(x^2+3\ge3\forall x\)
Min x2 + 3 = 3 tại x = 0
Khi đó: Max B = 1+ 12/3 = 5 tại x = 0
=.= hk tốt!!
|x+1 lớn hơn hoặc bằng 0
=> |x+1|+5 lớn hơn hoặc bằng 5
Dấu = xảy ra khi x+1=0 <=> x=-1
Vậy Min A = 5 khi x=-1
\(A=\left|x+5\right|+2-x\\ \Rightarrow A\ge x+5+2-x\forall x\\ \Rightarrow A\ge7\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left|x+5\right|=x+5\\ \Leftrightarrow x+5\ge0\\ \Leftrightarrow x\ge-5\)
Vậy GTNN của A = 7
a) Ta có : A = - 15 - |7 - x| = -(15 + |7 - x|)
vì \(\left|7-x\right|\ge0\forall x\Rightarrow15+\left|7-x\right|\ge15\Rightarrow-\left(15+\left|7-x\right|\right)\le-15\)
Dấu"=" xảy ra <=> 7 - x = 0
=> x = 7
Vậy GTLN của A là - 15 khi x = 7
b) Ta có : \(\hept{\begin{cases}\left|x+2,5\right|\ge0\forall x\\\left(y-1\right)^4\ge0\forall y\end{cases}\Rightarrow\left|x+2,5\right|+\left(y-1\right)^4\ge0}\)
=> \(\left|x+2,5\right|+\left(y-1\right)^4-6\ge-6\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+2,5=0\\y-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=-2,5\\y=1\end{cases}}}\)
Vậy GTNN của B là - 6 khi \(\hept{\begin{cases}x=-2,5\\y=1\end{cases}}\)
a) Vì \(\left|7-x\right|\ge0\forall x\)\(\Rightarrow-15-\left|7-x\right|\le-15\forall x\)
hay \(A\le-15\)
Dấu " = " xảy ra \(\Leftrightarrow7-x=0\)\(\Leftrightarrow x=7\)
Vậy \(maxA=-15\Leftrightarrow x=7\)
b) Vì \(\hept{\begin{cases}\left|x+2,5\right|\ge0\forall x\\\left(y-1\right)^4\ge0\forall y\end{cases}}\)\(\Rightarrow\left|x+2,5\right|+\left(y-1\right)^4\ge0\forall x,y\)
\(\Rightarrow\left|x+2,5\right|+\left|y-1\right|^4-6\ge-6\forall x,y\)
hay \(B\ge-6\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x+2,5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2,5\\y=1\end{cases}}\)
Vậy \(minB=-6\Leftrightarrow\hept{\begin{cases}x=-2,5\\y=1\end{cases}}\)