Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/1.2 + 1/2.3 + 1/3.4 + ... + 1/x(x + 1) = 99/100
1- 1/2 +1/2-1/3+1/3-1/4+...+ 1/x - 1/ x+ 1 = 99/100
1 - 1/ x+1 = 99/ 100
=> (100 - 1)/ x+1 = 99 / 100
=> x+1 = 100 => x=99
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{x\left(x+1\right)}=\frac{99}{100}\)
\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{99}{100}\)
\(\Rightarrow1-\frac{1}{x+1}=\frac{99}{100}\)
\(\Rightarrow\frac{1}{x+1}=1-\frac{99}{100}=\frac{1}{100}\)
\(\Rightarrow x+1=100\)
\(\Rightarrow x=99\)
a, => 3x-17 = 0 hoặc 3x-17 = 1
=> x=17/3 hoặc x=6
b, => x+1+x+2+....+x+100=205550
=>100x + (1+2+...+100)=205550
=> 100x + 5050 = 205550
=> 100x = 205550 - 5050 = 200500
=>x= 2005
c,=>x+x+1+....+x+2010=2029099
=>2011x+(1+2+....+2010)=2029099
=>2011x+2021055=2029099
=>2011x = 2029099-2021055 = 8044
=>x=4
Có : 3Q = 3+3^2+....+3^101
2Q=3Q-Q= (3+3^2+....+3^101)-(1+3+3^2+...+3^100) = 3^101-1
=>Q = (3^101-1)/2
cho \(M=1+3+3^2+...+3^{99}+3^{100}\)
=>\(M=1+\left(3+3^2+3^3\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)
\(=>M=1+3\left(1+3+3^2\right)+...+3^{98}\left(1+3+3^2\right)\)
\(=>M=1+13\left(3+...+3^{98}\right)\)
Mà \(13\left(3+3^{98}\right)⋮13\)
=> M chia cho 13 dư 1
+) \(M=1+3+3^2+...+3^{99}+3^{100}\)
\(\Leftrightarrow M=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)
\(\Leftrightarrow M=\left(1+3+9\right)+3^3\left(1+3+9\right)+....+3^{98}\left(1+3+9\right)\)
\(\Leftrightarrow M=13+3^3\cdot14+....+3^{98}\cdot14\)
\(\Leftrightarrow M=13\left(1+3^3+....+3^{98}\right)\)
=> M chia 13 dư 0
vì |x+1| lớn hơn hoặc bằng 0, |x+2| lớn hơn hoặc 0 suy ra |x+1|+|x+2| lớn hơn hoặc bằng 0 nên |x+1|+|x+2|=0
suy ra |x+1|=0
|x+2|=0
suy ra x+1=0
x+2=0
xong tìm x đi nhé chúc bạn học giỏi
Vì |x+1| và |x+2| đều >=0 => |x+1|+|x+2| >=0
Mà |x+1|+|x+2|=0 => |x+1|+|x+2| = 0 <=> x+1 = 0 và x+2 = 0
<=> x=-1 và x=-2 ( vô lý )
=> ko tồn tại x thỏa mãn bài toán trên
k mk nha
x=(1+2+3-4-5-6)+...+(97+98+99-100-101-102)
x=-9+...+-9
x=-9.17
x=-153
Đặt B=2+2^2+2^3...+2^100
2B=2^2+2^3+2^4+.....+2^101
2B-B=2^2+2^3+...+2^101-2-2^2-...-2^100
B=2^101-2
Ta có:2^n-1-2-2^2-2^3-...-2^100=1
<=>2^n-1-(2+2^2+...+2^100)=1
<=>2^n-1-B=2^n-1-(2^101-2)=1
<=>2^n-(2^101-2)=2
<=>2^n=2+2^101-2=2^101
<=>n=101
Vậy n=101