Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2x^2+3x+1\)
\(=2\left(x^2+\frac{3}{2}x+\frac{1}{2}\right)\)
\(=2\left(x^2+\frac{3}{2}x+\frac{9}{16}-\frac{1}{16}\right)\)
\(=2\left[\left(x+\frac{3}{4}\right)^2-\frac{1}{16}\right]\)
\(=2\left(x+\frac{3}{4}\right)^2-\frac{1}{8}\ge\frac{-1}{8}\)
Vậy \(A_{min}=\frac{-1}{8}\Leftrightarrow x+\frac{3}{4}=0\Leftrightarrow x=-\frac{3}{4}\)
Giá trị nhỏ nhất:
\(A=x^2+4x+3=x^2+2.x.2+2^2-1=\left(x+2\right)^2-1\)
Vì \(\left(x+2\right)^2\ge0\)
nên \(\left(x+2\right)^2-1\ge-1\)
Vậy \(Min_A=-1\)khi \(x+2=0\Leftrightarrow x=-2\)
\(B=3x^2-5x+2=3\left(x^2-\frac{5}{3}x+\frac{2}{3}\right)=3\left[x^2-2.x.\frac{5}{6}+\left(\frac{5}{6}\right)^2-\frac{1}{36}\right]=3\left(x-\frac{5}{6}\right)^2-\frac{1}{12}\)
Vì \(\left(x-\frac{5}{6}\right)^2\ge0\)
nên \(3\left(x-\frac{5}{6}\right)^2\ge0\)
do đó \(3\left(x-\frac{5}{6}\right)^2-\frac{1}{12}\ge-\frac{1}{12}\)
Vậy \(Min_B=-\frac{1}{12}\)khi \(x-\frac{5}{6}=0\Leftrightarrow x=\frac{5}{6}\)
Giá trị lớn nhất:
\(C=2x-x^2=-\left(x^2-2x\right)=-\left(x^2-2.x+1-1\right)=-\left(x-1\right)^2+1\)
Vì \(\left(x-1\right)^2\ge0\)
nên \(-\left(x-1\right)^2\le0\)
do đó \(-\left(x-1\right)^2+1\le1\)
Vậy \(Max_C=1\)khi \(x-1=0\Leftrightarrow x=1\)
\(D=x-x^2+1=-\left(x^2-x+1\right)=-\left[x^2-2.x\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\right]=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\)
nên \(-\left(x-\frac{1}{2}\right)^2\le0\)
do đó \(-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\le-\frac{3}{4}\)
Vậy \(Max_D=-\frac{3}{4}\)khi \(x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
\(A=5x^2-8x+5=5\left(x^2-\frac{8}{5}x+1\right).\)
\(=5\left(x^2-2.x.\frac{4}{5}+\frac{16}{25}-\frac{16}{25}+1\right)\)
\(=5\left[\left(x-\frac{4}{5}\right)^2+\frac{9}{25}\right]\)
\(=5\left(x-\frac{4}{5}\right)^2+\frac{9}{5}\)
\(A_{min}=\frac{9}{25}\Leftrightarrow\left(x-\frac{4}{5}\right)^2=0\)
\(\Rightarrow x-\frac{4}{5}=0\Leftrightarrow x=\frac{4}{5}\)
\(5x^2-8x+5=5\left(x^2-\frac{8}{5}x+1\right)=5\left(x^2-2.x.\frac{8}{10}+\frac{64}{100}+\frac{9}{25}\right)\)
\(=5\left(x-\frac{8}{10}\right)^2+\frac{9}{125}\ge\frac{9}{125}\)
=> \(5x^2-8x+5\) đạt GTNN bằng \(\frac{9}{125}\)
Dấu bằng xảy ra <=> \(5\left(x-\frac{8}{10}\right)^2=0\)
<=> \(x=\frac{4}{5}\)
chúc bn học tốt
\(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)+2015\)
\(=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]+2015\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)+2015\)
Đặt \(x^2+5x=t\) ta có pt trở thành:
\(\left(t-6\right)\left(t+6\right)+2015\)
\(=t^2-36+2015=t^2+1979\)
Vì: \(t^2\ge0\)
=> \(t^2+1979\ge1979\)
Vậy GTNN của bt trên là 1979 khi \(t=0\Leftrightarrow x^2+5x=0\Leftrightarrow x\left(x+5\right)=0\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=-5\end{array}\right.\)
\(A=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]+2015\)
\(\left(x^2+5x-6\right)\left(x^2+5x+6\right)+2015\)
\(=\left(x^2+5x\right)^2-6^2+2015\)
\(=\left[x\left(x+5\right)\right]^2+1979\ge1979\)
\(\Rightarrow Min_A=1979\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=-5\end{array}\right.\)
\(A=x^2-3x-5=x^2-2x\frac{3}{2}+\left(\frac{3}{2}\right)^2-\frac{29}{4}=\left(x-\frac{3}{2}\right)^2-\frac{29}{4}\ge-\frac{29}{4}\)
\(\Rightarrow Min\)\(A=-\frac{29}{4}\)
Vậy.............