K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Hello mn :> Lâu quá rồi không gặp ha :) (Chắc không ai biết tui đâu). Hôm nay đã là ngày 3/1/2023 rồi, tui chúc mn cùng các thầy cô trên web hoc24 một ngày Tết vui vẻ, được nhìu lì xì, tràn đầy sức khỏe và đạt điểm cao trong kì thi lần này. 

 Quay lại với chủ đề chính, nay đã là thứ ba rồi, mai chắc hẳn các bạn sẽ thi 2 môn cuối là Toán và Ngữ Văn (Tiếng Việt) đúng không nào. Sau đây mình xin chia sẻ 1 số tips để đạt điểm cao nhaaa :>

 I. Toán

1. Lập thời gian biểu, xác định giờ ôn, giờ giải lao.

 2. Giải nhiều đề trên mạng như VioEdu, VietJack, OLM, Hoc24,...

 3. Trước khi đi ngủ, hãy đọc 1 lượt các bài cần ôn để ghi nhớ kiến thức.

 4. Giải nhiều quyển sách như bồi dưỡng, nâng cao, các bài toán hay & khó, bài toán hay,.... 

 5. Dậy sớm, tầm 5h, đọc 1 lượt lại bài vì buổi sáng là thời điểm chúng ta tiếp thu kiến thức nhanh hơn. 

 II. Tiếng Việt

1. Đọc lại các kiến thức cần ghi nhớ trong SGK, viết lại những điều đã học được vào cuốn sổ tay.

2. Đọc lại các truyện trong SGK vì nó có thể giúp bạn viết hay hơn về phần văn.

3. Đọc sách trước khi đi ngủ, nó sẽ rèn cho bạn kĩ năng nhanh nhẹn và viết văn hay.

 Vậy là đã hết các tips của mình ròi, mong các bạn sẽ đạt điểm cao trong kì thi lần này, hãy cùng nhau ôn để đạt điểm cao nhé!!!

 Chúc mọi người buổi tối zui zẻ và an lànhhhhh :33

2
3 tháng 1 2023

Anh chị CTV ghim lên giúp em với ạ

3 tháng 1 2023

cảm ơn nhưng mik thi xong rồi:v

22 tháng 4 2017

Gọi x là điểm thi môn Toán, theo đề bài ta có điều kiện: 6 ≤ x ≤ 10

Giải bài 33 trang 48 SGK Toán 8 Tập 2 | Giải toán lớp 8

Vậy để đạt được loại giỏi thì bạn Chiến phải có điểm thi môn Toán thấp nhất là 7,5 điểm

9 tháng 7 2015

thứ nhất nè =)) vì biết bthức đó đã không phụ thuộc vào biến ( do cái đề cho nói chứng minh) nếu mà k phụ thuộc thì bảo chứng minh làm gì =)). Nam k cần dùng bút vì Nam chỉ cần đọc kết quả. Với mọi x thì biểu thức trên luôn cùng bằng 1 số nào đó vì cái đề bảo cm nó không phụ thuộc. nhìn hạng tử thứ 2, 6x^2-17x+11 có nghiệm là 1 nếu ta thay 1 vào thì ta sẽ mất cái hạng tử thứ 2. thay 1 vào thì (1^2-5.1+1)(1-2)+2004=2002. vậy Nam chỉ cần thay 1 vào và đọc kết quả thôi. :))

13 tháng 6 2016

Dễ ợt, vì Nam là siêu sao toán mà.

Cuộc thi vào nhưng ngày sắp đi học của các bạn hãy tận hưởng !Cuộc thi môn Tiếng Anh, toán vòng 2,... vào ngày 31/8!!Đơn đăng kí :trả lời gồm 5 bài toán (  2 bài lớp 7, 2 bài lớp 8, đặc biệt); tiếng anh gồm 2 bài đơn giản  (Ai không trả lời thì nên đánh dấu câu hỏi này nhé) (Nếu không trả lời hay đánh dấu thì rất khó biết lịch thi và kết quả)TOÁN:Lớp 7: ( 15 sp cho 3 người trả...
Đọc tiếp

Cuộc thi vào nhưng ngày sắp đi học của các bạn hãy tận hưởng !

Cuộc thi môn Tiếng Anh, toán vòng 2,... vào ngày 31/8!!

Đơn đăng kí :trả lời gồm 5 bài toán (  2 bài lớp 7, 2 bài lớp 8, đặc biệt); tiếng anh gồm 2 bài đơn giản  (Ai không trả lời thì nên đánh dấu câu hỏi này nhé) (Nếu không trả lời hay đánh dấu thì rất khó biết lịch thi và kết quả)

TOÁN:

Lớp 7: ( 15 sp cho 3 người trả lời đầu; 2sp cho hình vẽ )

Hình học:cho điểm M nằm trên đoạn thẳng AB. Trên cùng một nữa mặt phẳng bờ AB, vẽ các tam giác đều AMC, BMD. Gọi E, F theo thứ tự là trung điểm của AD, BC. Chứng minh rằng \(EF=\frac{1}{2}CD\)

Số học: Chứng minh rằng trong các số tự nhiên thế nào cũng có số k sao cho \(1983^k-1\)chia hết cho \(10^5\)

Lớp 8: ( bài toán số 20sp; toán hình 15sp cho 3 người đầu tiên )

Câu 1: Cho tam giác ABC. Trong các hình chữ nhật có 2 đỉnh nằm trên cạnh BC và 2 đỉnh còn lại lần lượt nằm trên 2 cạnh AB và AC, hãy tìm hình chữ nhật có diện tích lớn nhất

Câu 2:Chứng minh các bất phương trình sau tương đương 

a) \(2x^2+3x+1>0\)\(\frac{2}{3}x^2+x+\frac{1}{3}>0\)

b)\(4x-1< 0\)và \(1-4x>0\)

c)\(\frac{3x-2}{4}+2\frac{1}{2}>0\)và \(3x+8>0\)

2 Câu đặc biệt  :3 

Cho a, b, c là các số thực dương tùy ý. chứng minh rằng 

\(\frac{a\left(b+c\right)}{\left(b+c\right)^2+a^2}+\frac{b\left(a+c\right)}{\left(c+a\right)^2+b^2}+\frac{c\left(a+b\right)}{\left(a+b\right)^2+c^2}\le\frac{6}{5}\)

Giai phương trình \(\left(3x-2\right)\left(x+1\right)^2\left(3x+8\right)=-16\)

Thời gian công bố kết quả 7:30 ngày 1/9

(bạn nào trên 1000 điểm hỏi đáp có thể tham gia tài trợ sp , các bạn tài trợ cũng có thể tham gia) 

NỘI QUY : KHÔNG COP BÀI, KHÔNG CHÉP MẠNG ( khuyến cáo làm bài thi nên ghi câu mấy để dễ chấm )

mong cô chi  tick gp cho các bạn được thưởng 

20
31 tháng 8 2020

Câu đặc biệt :

\(\left(3x-2\right)\left(x+1\right)^2\left(3x+8\right)=-16\)

\(\Leftrightarrow9x^4+36x^3+29x^2-14x-16=-16\)

\(\Leftrightarrow9x^4+36x^3+29x^2-14x=0\)

\(\Leftrightarrow x\left(9x^3+36x^2+29x-14\right)=0\)

\(\Leftrightarrow x\left[\left(9x^3+18x^2-7x\right)+\left(18x^2+36x-14\right)\right]=0\)

\(\Leftrightarrow x\left[x\left(9x^2+18x-7\right)+2\left(9x^2+18x-7\right)\right]=0\)

\(\Leftrightarrow x\left(x+2\right)\left(9x^2+18x-7\right)=0\)

\(\Leftrightarrow x\left(x+2\right)\left[\left(9x^2+21x\right)-\left(3x+7\right)\right]=0\)

\(\Leftrightarrow x\left(x+2\right)\left[3x\left(3x+7\right)-\left(3x+7\right)\right]=0\)

\(\Leftrightarrow x\left(x+2\right)\left(3x-1\right)\left(3x+7\right)=0\)

<=> x = 0 hoặc x + 2 = 0 hoặc 3x - 1 = 0 hoặc 3x + 7 = 0

<=> x = 0 hoặc x = - 2 hoặc x = 1/3 hoặc x = 7/3

Vậy phương trình có tập nghiệm là : \(S=\left\{0;\frac{1}{3};\frac{7}{3};-2\right\}\)

31 tháng 8 2020

Câu 2:

a) Ta có: \(2x^2+3x+1>0\)

\(\Leftrightarrow\frac{2x^2+3x+1}{3}>\frac{0}{3}\)

\(\Leftrightarrow\frac{2}{3}x^2+x+\frac{1}{3}>0\)

=> đpcm

b) Ta có: \(4x-1< 0\)

\(\Leftrightarrow0-\left(4x-1\right)>0\)

\(\Leftrightarrow1-4x>0\)

=> đpcm

c) Ta có: \(\frac{3x-2}{4}+2\frac{1}{2}>0\)

\(\Leftrightarrow\frac{3x-2}{4}+\frac{10}{4}>0\)

\(\Leftrightarrow\frac{3x+8}{4}>0\)

\(\Rightarrow3x+8>0\)

=> đpcm

Hẳn là nhiều người trong chúng ta mất nhiều năm trời học qua cấp 1, cấp 2 và cấp 3 để thoát khỏi môn Toán (để rồi lên Đại học lại dính phải Toán Cao Cấp như tôi chả hạn). Các bạn nghĩ bài tập toán giao về nhà sau mỗi tiết học là khoai ư? Vậy thì các bạn hãy nhìn vào bài toán này đây, để giải nó cần tới 3 nhà toán học và 200 terabyte dung lượng chỉ để chứa lời giải, đấy là...
Đọc tiếp

Hẳn là nhiều người trong chúng ta mất nhiều năm trời học qua cấp 1, cấp 2 và cấp 3 để thoát khỏi môn Toán (để rồi lên Đại học lại dính phải Toán Cao Cấp như tôi chả hạn). Các bạn nghĩ bài tập toán giao về nhà sau mỗi tiết học là khoai ư? Vậy thì các bạn hãy nhìn vào bài toán này đây, để giải nó cần tới 3 nhà toán học và 200 terabyte dung lượng chỉ để chứa lời giải, đấy là đã có một siêu máy tính giúp sức rồi đấy nhé!

Bạn cứ tính, 1 terabyte chứa được 337.920 bản Chiến Tranh Và Hòa Bình, bộ tiểu thuyết của Lev Tolstoy, bộ tiểu thuyết dài nhất trong lịch sử loài người, vậy thì 200 terabyte sẽ chứa lượng chữ nhiều khủng khiếp đến nhường nào.

Bài toán này khó đến mức nào mà bài giải lại vĩ đại tới vậy? Đó là một vấn đề toán học xoay quanh định lý Pythagoras (hay chúng ta vẫn biết nó dưới tên định lý Py-ta-go), được đưa ra lần đầu tiên bởi giáo sư toán học Ronald Graham hồi những năm 1980. Có tên là Biến Số Đúng Sai Của Bộ Ba Số Nguyên Dương Pythagoras (Boolean Pythagorean Triples), vấn đề toán học này “khoai” đến mức Graham đã treo giải 100 USD cho bất kì ai giải được (năm 1980 nhé!).

Vấn đề toán học này xoay quanh công thức của định lý Pythagoras: a^2 b^2 = c^2. Trong đó a và b là hai cạnh góc vuông của một tam giác vuông, còn c là cạnh huyền.

 

Công thức của định lý Pythagoras.

Công thức của định lý Pythagoras.

 

Giải thích về tên của vấn đề toán học này:

Bolean là biến có giá trị đúng hoặc sai.

1
18 tháng 8 2017

Còn về Pythagoras Triples, có những bộ số nguyên dương được gọi là bộ ba Pythagoras sẽ luôn đúng khi áp dụng vào công thức của Pythagoras như : 3^2 4^2 = 5^2; 8^2 15^2 = 17^2. Chúng được gọi là Bộ Ba Số Nguyên Dương Pythagoras.

Và bạn hãy tưởng tượng rằng mọi số nguyên dương trong bảng chữ số sẽ được tô màu hoặc đỏ hoặc xanh. Graham đã đưa ra bài toán rằng: liệu có khả thi không khi thực hiện việc tô màu mọi số nguyên hoặc xanh hoặc đỏ, để cho không có Bộ Ba Pythagoras nào có cùng màu. Và 100 USD sẽ được thưởng cho bất cứ người nào giải được bài toán ấy (Chà, với 100 USD thì ta có thể chi trả cho tận 1 cái ổ có dung lượng 1 terabyte).

Vấn đề toán học này khó ở chỗ: một số nguyên dương có thể nằm trong nhiều Bộ Ba Pythagoras khác nhau. Ví dụ như số 5, ta có dãy 3-4-5 là Bộ Ba Pythagoras, nhưng dãy 5-12-13 cũng vậy. Áp dụng điều kiện của Graham, nếu số 5 của dãy đầu tiên tô màu xanh, thì trong dãy thứ hai nó cũng phải là màu xanh, vì thế số 12 và 13 phải mang màu đỏ.

Càng tiến xa hơn với điều kiện mà Graham đề ra, các con số càng lớn và vấn đề bắt đầu nảy sinh. Nếu như số 12 phải mang màu đỏ trong dãy 5-12-13, những dãy số sau này chứa số 12 sẽ bắt buộc mang một màu nhất định.

Các nhà toán học Marijn Heule từ Đại học Texas, Victor Marek từ Đại học Kentucky, và Oliver Kullmann từ Đại học Swansea tại Anh đã cùng nhau giải quyết vấn đề này. Họ đã cài đặt một số phép thử và kĩ thuật tính toán vào trong siêu máy tính Stampede tại Đại học Texas, để cho nó có thể thu hẹp phạm vi “tô màu” xuống còn 102,300 tỷ tỷ khả năng (trăm nghìn tỷ tỷ, từng đó là có tổng cộng 25 số “0” đó các bạn).

Bộ siêu máy tính gồm 800 vi xử lý mạnh mẽ đã phải mất tới 2 ngày để “nhằn” hết đống phép thử kia, và nó chỉ có thể khả thi cho tới số 7.824. Bắt đầu từ 7.825 trở đi là không thể thỏa mãn điều kiện đặt ra của Graham.

Vậy là 3 nhà toán học (kèm một cái siêu máy tính) đã giải quyết được vấn đề toán học đã tồn tại cả thập kỉ này, và cụ Ronald Graham cũng đã giữ lời hứa của mình, thưởng “hậu hĩnh” món tiền 100 USD cho 3 anh.

“Bộ ba nguyên tử” của 3 nhà toán học này đã tạo ra một bản nén 68 gigabyte cho bất kì bạn trẻ nào có một bộ vi xử lý tốt cùng với 30.000 giờ rảnh rỗi để tải về, tái dựng và xác minh vấn đề. Nhưng nếu bạn có 30.000 giờ rảnh thật thì cũng còn một vấn đề khác nữa, con người không thể đọc được những dòng thuật toán đó.

Thực tế, bộ ba đã phải “nhờ” một chương trình máy tính khác để xác minh lại kết quả của họ, và cuối cùng thì 7.824 là con số chính xác. Ronald Graham cũng hài lòng với việc xác minh được con số này.

Nhưng nhiều người cho rằng, con người không đọc nổi kết quả nên nó không đủ thuyết phục. Dù không chứng minh được là nó sai, nhưng việc đó cũng không giải quyết vấn đề đến tận cùng. Tại sao bắt đầu từ số 7.825 trở đi thì việc “tô màu” là bất khả thi? Chúng ta không giải thích được, mà chỉ được dàn siêu máy tính kia cho biết vậy thôi.

Làm sau mà con người có thể hiểu được ý nghĩa của các con số với chúng ta cũng như với cả Vũ trụ nếu như mọi vấn đề toán học được giải quyết bằng máy như vậy. Sự thực là vấn đề này quá khó giải quyết, có lẽ cũng lại phải nhờ một bộ siêu máy tính nào đó vào cuộc thôi.

*TỔ CHỨC CUỘC THI TOÁN NÂNG CAO CẤP THCS (7-8-9) (khối 6 vẫn có thể tham gia)---------------------------------------------------------------------------------------------------Cập nhật ngày 7-12-2018 lúc 7:43:   Vòng tiếp theo đã được mở.Những bạn nào muốn tham gia thì vào đây---------------------------------------------------------------------------------------------*Đối tượng: Học sinh cấp trung học cơ sở.Thống kê hỏi đáp...
Đọc tiếp

*TỔ CHỨC CUỘC THI TOÁN NÂNG CAO CẤP THCS (7-8-9) (khối 6 vẫn có thể tham gia)

---------------------------------------------------------------------------------------------------

Cập nhật ngày 7-12-2018 lúc 7:43:

   Vòng tiếp theo đã được mở.Những bạn nào muốn tham gia thì vào đây

---------------------------------------------------------------------------------------------

*Đối tượng: Học sinh cấp trung học cơ sở.Thống kê hỏi đáp có trên 10 câu trả lời đúng và hay.

*Thể lệ thi:

    +Mỗi lần đăng lên một bài, nên kiểm tra kĩ trước khi đăng (vì mỗi bài chỉ được đăng lên một lần)

    +Không spam,không đăng bình luận linh tinh,chỉ trích hay "ném đá" bài giải người khác.

À mà,đã là cuộc thi thì không thể không có giải thưởng.Vậy thì:

*Giải thưởng: 

    +Giải nhất: 10 SP hoặc hơn tùy vào độ hay của bài làm (Hoặc là 1 - 5 GP của giáo viên)

    +Giải nhì:   6 SP (hoặc 1 - 2 GP)

    +Giải khuyến khích:  3 SP

Hơi dài dòng rồi,chúng ta bắt đầu những vòng đầu tiên của cuộc thi thôi!

--------------------------------------------------------------------------------------------------

Bài 1: Cho tam giác ABC với AB < AC và góc BAC > 60o.Vẽ các đường phân giác BE và CF của tam giác ABC.Đường thẳng B song song với BE cắt AB ở N,cắt BM ở K.So sánh KM với KN

Bài 2: Giải phương trình: \(3x^2+5x+14=5\left(x+1\right)\sqrt{4x-1}\)

Bài 3: Tìm GTNN của biểu thức: \(A=4\left(a+b+c\right)^2+3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\) với a,b,c là các số thực dương.

 

    

15
6 tháng 12 2018

Làm vào đây luôn hả ad

6 tháng 12 2018

AD ƠI, NẾU LÀM VÀO ĐÂY THÌ CÓ THỂ CÁC BẠN KHÁC COPPY BÀI LÀM CỦA MK THÌ SAO Ạ?

Cuộc thi môn Tiếng Anh,toán vòng 1,... vào ngày 15/2!!Đơn đăng kí : từ lớp 7-9quy định : thời gian làm bài từ ( 7:30ngày 15/2-9:00ngày 16/2)ngày 15/2/2020,-ko chép mạng nếu bị bgk phát hiện tước quyền tham gia-ko copy bài người khác nếu bgk hỏi vì sao ra như thế ko trả lời được trừ 6 đ-bài thi gồm có 3 bài toán, văn, anh mỗi môn có 2 câu hỏi -nếu điểm thi giống nhau bgk sẽ lấy người trả lời...
Đọc tiếp

Cuộc thi môn Tiếng Anh,toán vòng 1,... vào ngày 15/2!!

Đơn đăng kí : từ lớp 7-9

quy định : thời gian làm bài từ ( 7:30ngày 15/2-9:00ngày 16/2)ngày 15/2/2020,

-ko chép mạng nếu bị bgk phát hiện tước quyền tham gia

-ko copy bài người khác nếu bgk hỏi vì sao ra như thế ko trả lời được trừ 6 đ

-bài thi gồm có 3 bài toán, văn, anh mỗi môn có 2 câu hỏi -nếu điểm thi giống nhau bgk sẽ lấy người trả lời trước

-có quyền thi riêng 1 môn nếu được cô quản lý tk đúng

-TỔNG CỘNG 3 ĐỀ  LÀ 20 Đ 

(Ai không trả lời thì nên đánh dấu câu hỏi này nhé) (Nếu không trả lời hay đánh dấu thì rất khó biết lịch thi và kết quả)

đề 1 TOÁN

BÀI 1(3Đ)

CHO \(\Delta ABC\left(AB>AC\right)\)

KẺ ĐƯỜNG CAO BM , CN CỦA TAM GIÁC . CHỨNG MINH RẰNG

A) \(\Delta ABM\)ĐỒNG DẠNG\(\Delta ACN\)

B)\(\widehat{AMN}=\widehat{ABC}\)

C)TRÊN CẠNH AB LẤY ĐIỂM K SAO CHO BK=AC GỌI E LÀ TRUNG ĐIỂM CỦA BC,F LÀ TRUNG ĐIỂM CỦA AK

CM:\(EF//\)VỚI TIA PHÂN GIÁC Ax CỦA \(\widehat{BAC}\)

BÀI 2(4Đ) CHO BIỂU THỨC \(A=\left(\frac{x^2}{x^2-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)

A)TÌM ĐIỀU KIỆN CỦA X ĐỂ A XÁC ĐỊNH

B) RÚT GỌN BIỂU THỨC A

C)TÌM GIÁ TRỊ CỦA X ĐỂ A>0

ĐỀ ANH VĂN

I/ Điền đúng dạng của từ được in hoa để hoàn thành câu. (3Đđ)

1. We have two postal ___________________ a day.

(DELIVER)

2. He left the room without ___________________ .

(EXPLAIN)

3. Playing tennis is one of his favorite ______________ .

(ACT)

4. We started our trip on a beautiful ______________ morning.

(SUN)

5. They left the house in a __________________ mess.

(FRIGHT)

6. He said “ Good morning” in a most ______________ way.

(FRIEND)

7. There is no easy ______________ to this problem.

(SOLVE)

8. He always drives more ________________ at night.

(CARE)

9. Does this _______________ suit you?

(ARRANGE)

10. He is a very _________________ carpenter.( SKILL)

II)ĐIỀN(3Đ)

popular / events / programs/ important / games / famous / radio /news / sport / play

Sports and games play an (1) __________ part in our lives. Everyone of us can (2) _______ a sport, or a game, or watch sports (3) ___________on TV or at the stadium. When you listen to the (4) ___________early in the morning, you can always hear sports (5) _________. When you open a newspaper, you will always find information about some (6) ____________, or an article about your favorite kind of sport. Television (7) ___________ about sport are also very (8) _____________, and you can watch something interesting nearly every day. Stories about (9) ___________ men and women in the world of (10) __________ are often very interesting.

ĐỀ VĂN

1) EM HÃY NGHỊ LUẬN VỀ VIỆC CHƠI ĐIỆN TỬ(4Đ)

2). Phần tạo lập văn bản (3 điểm)

Thân em vừa trắng lại vừa tròn

Bẩy nổi ba chìm với nước non

Rắn nát mặc dầu tay kẻ nặn

Mà em vần giữ tấm lòng son

(Bánh trôi nước – Hồ Xuân Hương)

Viết bài văn biểu cảm về hình ảnh người phụ nữ qua bài thơ trên. Từ đó em có suy nghĩ gì về người phụ nữ trong xã hội ngày hôm nay.

Giải thưởng :(báo sau)  >>>>

(Cần sự tài chợ SP của các CTV hay các bạn trên 2500 điểm hỏi đáp )( các bạn tài trợ cũng có thể tham gia)

6
15 tháng 2 2020

Tui đăng kí thi anh : 

Phan Tiến Nghĩa 

Lớp 7 :>

Bài làm : 

1. We have two postal deliveries a day.

2. He left the room without explaining

3. Playing tennis is one of his favorite activities

4. We started our trip on a beautiful sunning morning.

5. They left the house in a frightening mess.

6. He said “ Good morning” in a most friendly way.

7. There is no easy solution to this problem.

8. He always drives more carefully at night.

9. Does this arrangement suit you?

10. He is a very skillful carpenter.

Sports and games play an (1) important part in our lives. Everyone of us can (2) play a sport, or a game, or watch sports (3) events on TV or at the stadium. When you listen to the (4) radio early in the morning, you can always hear sports (5)new. When you open a newspaper, you will always find information about some (6) game, or an arle about your favorite kind of sport. Television (7) programmes about sport are also very (8) popular , and you can watch something interesting nearly every day. Stories about (9) famous men and women in the world of (10) sport are often very interesting.

15 tháng 2 2020

Đây tài trên 2k5 SP , vậy thì tài trợ khoảng 50 => 70 SP nhé 

_ [ Với quy định nhiều người tham gia nhea -v- ]

#Anh :33

Cuộc thi môn Tiếng Anh, toán vòng 1,... vào ngày 28/8!!Đơn đăng kí :trả lời gồm 5 bài toán ( 1 bài lớp 6, 1 bài lớp 7, 2 bài lớp 8, 1 bài lớp 9); tiếng anh gồm 2 bài đơn giản  (Ai không trả lời thì nên đánh dấu câu hỏi này nhé) (Nếu không trả lời hay đánh dấu thì rất khó biết lịch thi và kết quả)TOÁN:Lớp 6:  ( 10sp cho 2 người trả lời đầu tiên với điều kiện người thứ 2 cách khác...
Đọc tiếp

Cuộc thi môn Tiếng Anh, toán vòng 1,... vào ngày 28/8!!

Đơn đăng kí :trả lời gồm 5 bài toán ( 1 bài lớp 6, 1 bài lớp 7, 2 bài lớp 8, 1 bài lớp 9); tiếng anh gồm 2 bài đơn giản  (Ai không trả lời thì nên đánh dấu câu hỏi này nhé) (Nếu không trả lời hay đánh dấu thì rất khó biết lịch thi và kết quả)

TOÁN:

Lớp 6:  ( 10sp cho 2 người trả lời đầu tiên với điều kiện người thứ 2 cách khác người thứ nhất)

Tìm  \(n\in z\)và \(n>-2\)để phân số \(\frac{n+7}{n+2}\)tối giản

Lớp 7: ( 15 sp cho 1 người trả lời đầu; 2sp cho hình vẽ ) 

Cho \(\Delta ABC\), đường phân giác AD. Trên đoạn thẳng AD lấy các điểm E và F sao cho \(\widehat{ABE}=\widehat{CBF}\). Chứng minh rằng \(\widehat{ACE}=\widehat{BCF}\)

Lớp 8: ( bài toán số 20sp; toán hình 15sp cho 2 người đầu tiên )

Câu 1: Giai các bất phương trình sau: 

a)\(\frac{5x^2-3}{5}+\frac{3x-1}{4}< \frac{x\left(2x+3\right)}{2}-5\)

b) \(\left(5x-\frac{2}{3}\right)-\frac{2x^2-x}{2}\ge\frac{x\left(1-3x\right)}{3}-\frac{5x}{4}\)

Câu 2: Cho \(\Delta ABC\)vuông tại A. Chọn trên AB điểm D kẻ Dx // AC cắt BC tại E thỏa mãn điều kiện \(AE\perp CD\)tại K, và \(\frac{CD}{AE}=\frac{m}{n}\). Tính \(\frac{S_{BDE}}{S_{ADEC}}\)

Lớp 9: ( 25s cho 2 người 2 cách giải)

Cho a, b, c là các số thực dương thỏa mãn \(a+b+c\le1\). Chứng minh rằng:

\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab\left(a+b\right)}+\frac{1}{cb\left(c+b\right)}+\frac{1}{ac\left(a+c\right)}\ge\frac{87}{2}\)

Tiếng Anh: ( 15sp cho 1 người )

 Fill in each blank with the appropriate forms of the word in bracket.

1. There is a ……….. of books on the shelf. (collect)

2. It is very …………….. for people in remote areas to get to hospitals. (convenience)

3. He is very …………. with his hands. (skill)

4. It is said that water collected from the local streams is ………… to drink. (safe)

5. I like to eat ………., so I eat a lot of fruits and vegetables every day. (health)

thời gian làm bài :từ h đến chiều ngày mai vào lúc 15h ( 3 giờ chiều )

Thời gian công bố kết quả 9:30 lúc 15h30

(bạn nào trên 1000 điểm hỏi đáp có thể tham gia tài trợ sp , các bạn tài trợ cũng có thể tham gia) 

NỘI QUY : KHÔNG COP BÀI, KHÔNG CHÉP MẠNG ( khuyến cáo làm bài thi nên ghi câu mấy để dễ chấm )

17
28 tháng 8 2020

Tiếng Anh: ( 15sp cho 1 người )

 Fill in each blank with the appropriate forms of the word in bracket.

1. There is a collection of books on the shelf. (collect)

2. It is very inconvinient  for people in remote areas to get to hospitals. (convenience)

3. He is very skillful with his hands. (skill)

4. It is said that water collected from the local streams is safe to drink. (safe)

5. I to eat healthy, so I eat a lot of fruits and vegetables every day. (health)

29 tháng 8 2020

Theo AM - GM cho 3 số dương: \(\frac{1}{ab\left(a+b\right)}+\frac{1}{bc\left(b+c\right)}+\frac{1}{ca\left(c+a\right)}\ge3\sqrt[3]{\frac{1}{a^2b^2c^2\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)(*)

Tiếp tục sử dụng AM - GM, ta được: \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\frac{8\left(a+b+c\right)^3}{27}\le\frac{8}{27}\)(do \(a+b+c\le1\))

và \(a^2b^2c^2\le\frac{\left(ab+bc+ca\right)^3}{27}\)

Từ đó suy ra \(a^2b^2c^2\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\frac{8\left(ab+bc+ca\right)^3}{27^2}\)(**)

Từ (*) và (**) suy ra \(\frac{1}{ab\left(a+b\right)}+\frac{1}{bc\left(b+c\right)}+\frac{1}{ca\left(c+a\right)}\ge\frac{27}{2\left(ab+bc+ca\right)}\)

Đến đây, ta cần chứng minh \(\frac{1}{a^2+b^2+c^2}+\frac{27}{2\left(ab+bc+ca\right)}\ge\frac{87}{2}\)(***)

Thật vậy, áp dụng bất đẳng thức Bunyakovsky dạng phân thức, ta được: \(\frac{1}{a^2+b^2+c^2}+\frac{27}{2\left(ab+bc+ca\right)}=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{23}{2\left(ab+bc+ca\right)}\)\(\ge\frac{9}{\left(a+b+c\right)^2}+\frac{23}{2.\frac{\left(a+b+c\right)^2}{3}}\ge\frac{87}{2}\)*đúng theo (***)*

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)

2 tháng 9 2019

A B C E D M N I K

Trong tam giác ABC ta có:

E là trung điểm của cạnh AB

D là trung điểm của cạnh AC

Nên ED là đường trung bình của ∆ ABC

⇒ED//BC⇒ED//BC và ED=\(\frac{1}{2}BC\) (tính chất đường trung bình của tam giác)

Trong hình thang BCDE, ta có: BC // DE

M là trung điểm cạnh bên BE

N là trung điểm cạnh bên CD

Nên MN là đường trung bình hình thang BCDE ⇒ MN // DE

\(MN=\frac{DE+BC}{2}=\frac{\frac{BC}{2}+BC}{2}=\frac{3BC}{4}\)(tính chất đường trung bình hình thang)

Trong tam giác BED ta có:

M là trung điểm của BE

MI // DE

Suy ra: MI là đường trung bình của ∆ BED

\(\Rightarrow MI=\frac{1}{2}DE=\frac{1}{4}BC\)(tính chất đường trung bình tam giác)

Trong tam giác CED ta có:

N là trung điểm của CD

NK // DE

Suy ra: NK là đường trung bình của ∆ BED

\(\Rightarrow NK=\frac{1}{2}DE=\frac{1}{4}BC\)(tính chất đường trung bình tam giác)

\(IK=MN-\left(MI+NK\right)\)

\(=\frac{3}{4}BC-\left(\frac{1}{4}BC+\frac{1}{4}BC\right)=\frac{1}{4}BC\)

\(\Rightarrow MI=IK=KN=\frac{1}{4}BC\)

Chúc bạn học tốt !!!

3 tháng 9 2019

Cảm ơn hoang viet nhat nhé, nhưng lời giải này không được cô giáo mình chấp nhận vì cô bảo chưa học đến đường trung bình của hình thang nên nếu mình làm thế trên bảng thì các bạn sẽ không hiểu.