Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề x^7 chuyển thành x^8
Ta có
\(x^8+x+1=x^8-x^2+x^2+x+1\)
\(=x^2[\left(x^3\right)^2-1]+x^2+x+1\)
\(=x^2\left(x^3-1\right)\left(x^3+1\right)+x^2+x+1\)
\(=x^2\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)+x^2+x+1\)
\(=\left(x^2+x+1\right)\left(x^6+x^3-x^5-x^2+1\right)\)
câu này gửi rồi mà tôi lm rồi đó Câu hỏi của nguyen thi diem quynh - Toán lớp 8 - Học toán với OnlineMath
a. 1+6x-6x2-x3
=(1-x3)+(6x-6x2)
=(1-x)(1+x+x2)+6x(1-x)
=(1-x)(1+x+x2+6x)
=(1-x)(1+7x+x2)
b. x3-2x-4
=x3-4x+2x-4
=x(x2-4)+2(x-2)
=x(x-2)(x+2)+2(x-2)
=(x2+2x+2)(x-2)
Ủng hộ mk nhak ^_-
a) \(x^3-16x=x\left(x^2-4\right)=x\left(x-2\right)\left(x+2\right)\)
b) \(3x^2+3y^2-6xy-12=3\left(x^2-2xy+y^2-4\right)=3\left(x-y-2\right)\left(x-y+2\right)\)
c) \(x^2+6x+5=\left(x+1\right)\left(x+5\right)\)
d) \(x^4+x^3+2x^2+x+1=x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)=\left(x^2+x+1\right)\left(x^2+1\right)\)
\(a^3+a^2c-abc+b^2c+b^3\)
\(=\left(a^3+b^3\right)+\left(a^2c+b^2c-abc\right)\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+\)\(c\left(a^2+b^2-ab\right)\)
\(=\left(a^2+b^2-ab\right)\left(a+b+c\right)\)
\(x^3+y^3+z^3-3xyz=\left(x+y\right)^3-3x^2y-3xy^2+z^3-3xyz\)
\(=\left[\left(x+y\right)^3+z^3\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)
ta muốn làm nắm nhưng mi bợi thêm năm nữa đi nha đợi ta lên lớp 8 ta giải cho
a) \(\left(a+b-c\right)^2-\left(a-c\right)^2-2ab+2ac\)
\(=a^2+b^2+c^2+2ab-2bc-2ac-a^2+2ac-c^2-2ab+2ac\)
\(=b^2-2bc+2ac=b.\left(b-2c+2a\right)\)
b) \(x^4+2x^3+5x^2+4x-12\)
\(=x^4-x^3+3x^3-3x^2+8x^2-8x+12x-12\)
\(=x^3.\left(x-1\right)+3x^2.\left(x-1\right)+8x.\left(x-1\right)+12.\left(x-1\right)\)
\(=\left(x-1\right)\left(x^3+3x^2+8x+12\right)\)
\(=\left(x-1\right)\left[\left(x^3+2x^2\right)+\left(x^2+2x\right)+\left(6x+12\right)\right]\)
\(=\left(x-1\right)\left[x^2.\left(x+2\right)+x.\left(x+2\right)+6.\left(x+2\right)\right]\)
\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)\)
Pạn Khánh Châu ơi
Cái dòng thứ 2 đấy, dấu hiệu nhận biết là j vậy
Mà sao pạn phân tích hay vậy????
\(x^{10}+x^5+1\)
\(=x^{10}+x^5+x^2-x^2+x-x+1\)
\(=\left(x^{10}-x\right)+\left(x^5-x^2\right)+\left(x^2+x+1\right)\)
\(=x\left[\left(x^3\right)^3-1\right]+x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=x\left(x^3-1\right)\left(x^6+x^3+1\right)+x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)\left(x^6+x^3+1\right)+x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[x\left(x-1\right)\left(x^6+x^3+1\right)+x^2\left(x-1\right)+1\right]\)
=.= hok tốt!!
Không phân tích được bạn ơi