Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+x^2+4\)
\(=x^3+2x^2-x^2-2x+2x+4\)
\(=x^2\left(x+2\right)-x\left(x+2\right)+2\left(x+2\right)\)
\(=\left(x^2-x+2\right)\left(x+2\right)\)
b)Sửa đề nha :
\(x^8+2x^4+1=\left(x^4\right)^2+2x^4+1=\left(x^4+1\right)^2\)
Bạn Mai Thanh Xuân ơi
Cái bước thứ 2 của câu a) tại sao lag x^3 + 2x^2 - x^2 - 2x + 2x + 4 vậy pạn
Cái đó bạn có thể giải thích cụ thể ra vì sao có lí do đấy không ạ
Giải thích từng bước một nhé bạn
\(x^3+x^2+4=x^3+2x^2-x^2+2x-2x+4\)
\(=x^2\left(x+2\right)-x\left(x+2\right)-2\left(x+2\right)\)
\(=\left(x^2-x-2\right)\left(x+2\right)\)
\(=\left(x^2-2x+x-2\right)\left(x+2\right)\)
\(=\left\{x\left(x-2\right)+\left(x-2\right)\right\}\left(x+2\right)\)
\(=\left(x+1\right)\left(x-2\right)\left(x+2\right)\)
a) \(-10x^3+2x^2=0\)
\(\Rightarrow-2x^2\left(5x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{5}\end{matrix}\right.\)
b) \(5x\left(x-2016\right)-x+2016=0\)
\(\Rightarrow5x\left(x-2016\right)-\left(x-2016\right)=0\)
\(\Rightarrow\left(x-2016\right)\left(5x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2016\\x=\dfrac{1}{5}\end{matrix}\right.\)
a: Ta có: \(-10x^3+2x^2=0\)
\(\Leftrightarrow-2x^2\left(5x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{5}\end{matrix}\right.\)
\(x^4+4x^2-5\)
\(=\left[\left(x^2\right)^2+2.x^2.2+2^2\right]-9\)
\(=\left(x^2+2\right)^2-9\)
\(=\left(x^2+2+3\right)\left(x^2+2-3\right)\)
\(=\left(x^2+5\right)\left(x^2-1\right)\)
\(=\left(x^2+5\right)\left(x+1\right)\left(x-1\right)\)
\(x^5+x+1=x^5-x^2+x^2+x+1\)
\(=x^2\left(x^3-1\right)+x^2+x+1\)
\(=x^2\left(x-1\right)\left(x^2+x+1\right)+x^2+x+1\)
\(=\left(x^3-x+1\right)\left(x^2+x+1\right)\)
\(x^8+x^7+1\)
\(=x^8+x^7+x^6-x^6+x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x-xx+1\)
\(=\left(x^8-x^6+x^5-x^3+x^2\right)\)
\(+\left(x^7-x^5+x^4-x^2+x\right)\)
\(+\left(x^6-x^4+x^3-x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)
a) \(x\left(x+4\right)\left(x-4\right)-\left(x^2-1\right)\left(x^2+1\right)\)
\(=x\left(x^2-16\right)-\left(x^4-1\right)\)
\(=x^3-16x-x^4+1\)
bạn ktra lại đề
b) \(x^4+2x^3+5x^2+4x-12\)
\(=x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)\)
\(=\left(x-1\right)\left(x^3+3x^2+8x+12\right)\)
\(=\left(x-1\right)\left[x^2\left(x+2\right)+x\left(x+2\right)+6\left(x+2\right)\right]\)
\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)\)
a) \(\left(a+b-c\right)^2-\left(a-c\right)^2-2ab+2ac\)
\(=a^2+b^2+c^2+2ab-2bc-2ac-a^2+2ac-c^2-2ab+2ac\)
\(=b^2-2bc+2ac=b.\left(b-2c+2a\right)\)
b) \(x^4+2x^3+5x^2+4x-12\)
\(=x^4-x^3+3x^3-3x^2+8x^2-8x+12x-12\)
\(=x^3.\left(x-1\right)+3x^2.\left(x-1\right)+8x.\left(x-1\right)+12.\left(x-1\right)\)
\(=\left(x-1\right)\left(x^3+3x^2+8x+12\right)\)
\(=\left(x-1\right)\left[\left(x^3+2x^2\right)+\left(x^2+2x\right)+\left(6x+12\right)\right]\)
\(=\left(x-1\right)\left[x^2.\left(x+2\right)+x.\left(x+2\right)+6.\left(x+2\right)\right]\)
\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)\)
Pạn Khánh Châu ơi
Cái dòng thứ 2 đấy, dấu hiệu nhận biết là j vậy
Mà sao pạn phân tích hay vậy????