Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=\left(x^2-y^2\right)\left(x^2+y^2\right)=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\\ b,=\left(x-\sqrt{3}y\right)\left(x+\sqrt{3}y\right)\\ c,=\left[3x-2y-2\left(x+y\right)\right]\left[3x-2y+2\left(x+y\right)\right]\\ =5x\left(x-4y\right)\\ d,=\left[3\left(x-y\right)-2\left(x+y\right)\right]\left[3\left(x-y\right)+2\left(x+y\right)\right]\\ =\left(3x-3y-2x-2y\right)\left(3x-3y+2x+2y\right)\\ =\left(x-5y\right)\left(5x-y\right)\\ f,=\left(x+3\right)\left(x^2-3x+9\right)\\ g,=\left(3x-0,1\right)\left(9x^2+0,3x+0,01\right)\\ h,=\left(5x-1\right)\left(25x^2+5x+1\right)\)
\(a)x^4-y^4=(x^2-y^2)(x^2+y^2)=(x-y)(x+y)(x^2+y^2)\\ b)x^2-3y^2=\\ c)(3x-2y)^2-4(x+y)^2=(3x-2y)^2-[2(x+y)]^2\\=(3x-2y+2x+2y)(3x-2y-2x-2y)=5x(x-4y)\\ d)9(x-y)^2-4(x+y)^2=[3(x-y)]^2-[2(x+y)]^2=(3x-3y+2x+2y)(3x-3y-2x-2y)\\=(5x-y)(x-5y)\\ f)x^3+27=(x+3)(x^2-3x+9)\\ g)27x^3-0,001=(3x-0,1)(9x+0,3x+0,01)\\ h)125x^3-1=(5x-1)(25x^2+5x+1)\)
1A:
a: \(x^3+2x=x\left(x^2+2\right)\)
b: \(3x-6y=3\left(x-2y\right)\)
c: \(5\left(x+3y\right)-15x\left(x+3y\right)\)
\(=5\left(x+3y\right)\left(1-3x\right)\)
d: \(3\left(x-y\right)-5x\left(y-x\right)\)
\(=3\left(x-y\right)+5x\left(x-y\right)\)
\(=\left(x-y\right)\left(5x+3\right)\)
1A. a. x(x2+2)
b. 3(x-2y)
c. 5(x+3y)(1-3x)
d. (x-y) (3-5x)
1B. a. 2x(2x-3)
b.xy(x2-2xy+5)
c. 2x(x+1)(x+2)
d. 2x(y-1)+2y(y-1)=2(y-1)(x-y)
Lời giải:
a.
$ab(a-b)+bc(b-c)+ca(c-a)$
$=ab(a-b)-bc[(a-b)+(c-a)]+ca(c-a)$
$=ab(a-b)-bc(a-b)-bc(c-a)+ca(c-a)$
$=(a-b)(ab-bc)-(c-a)(bc-ca)=b(a-b)(a-c)-c(c-a)(b-a)$
$=b(a-b)(a-c)-c(a-c)(a-b)=(a-b)(b-c)(a-c)$
b.
$x^2-3xy-10y^2=(x^2+2xy)-(5xy+10y^2)$
$=x(x+2y)-5y(x+2y)=(x+2y)(x-5y)$
c.
$3x(x-2)-x+2=3x(x-2)-(x-2)=(x-2)(3x-1)$
\(a,ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\\ =a^2b-ab^2+b^2c-bc^2+ca\left(c-a\right)\\ =\left(a^2b-bc^2\right)-\left(ab^2-b^2c\right)+ca\left(c-a\right)\\ =b\left(a-c\right)\left(a+c\right)-b^2\left(a-c\right)-ca\left(a-c\right)\\ =\left(a-c\right)\left(ab+bc-b^2-ca\right)\\ =\left(a-c\right)\left(b-c\right)\left(a-b\right)\)
\(b,x^2-3xy-10y^2\\ =x^2+2xy-5xy-10y^2\\ =x\left(x+2y\right)-5y\left(x+2y\right)=\left(x-5y\right)\left(x+2y\right)\)
\(c,3x\left(x-2\right)-x+2=3x\left(x-2\right)-\left(x-2\right)=\left(3x-1\right)\left(x-2\right)\)
a) x2y+xy+x+1= (x2y+xy)+(x+1)=xy(x+10+(x+1)=(x+1)(xy+1)
b) x2-(a+b)x+ab=x2-ax-bx+ab=(x2-ax)-(bx-ab)=x(x-a)-b(x-a)=(x-a)(x-b)
c) ax2+ay-bx2-by=(ax2+ay)-(bx2+by)=a(x2+y)-b(x2+y)=(a-b)(x2+y)
d) ax-2x-a2+2a=(ax-2x)-(a2-2a)=x(a-2)-a(a-2)=(a-2)(x-a)
e) 2x2+4ax+x+2a=(2x2+4ax)+(x+2a)=2x(x+2a)+(x+2a)=(x+2a)(2x+1)
f) x3+ax2+x+a=(x3+ax2)+(x+a)=x2(x+a)+(x+a)=(x2+1)(x+a)
\(a)(x-1)x+(x-1)y\)
\(=(x-1)(x+y)\)
\(b)5x^3+15xy\)
\(=5x(x^2+3y)\)
\(c)6xy^2-8x^2y\)
\(=2xy(3y-4x)\)
\(d)2x^3+4x^2-6x\)
\(=2x(x^2+2x-3)\)
\(e)5(x-3)-20(3-x)\)
\(=5(x-3)+20(x-3)\)
\(=(x-3)(5+20)\)
\(=25(x-3)\)
a: =(x-1)(x+y)
b: =5x(x^2+3y)
c: 6xy^2-8x^2y=2xy(3y-4x)
d: =2x(x^2+2x-3)
=2x(x+3)(x-1)
e: =25(x-3)
a. 3xy( 4x + y - \(\dfrac{4}{3}\) )
b. 2x2( 3x + 1 )
c. (2x + 3 )( x - y )
d. xy( 1 - x )( x - 1 )
e. 6( 2x + 1 )( x + y )
\(a,=\left(x-2\right)\left(9x^2y^2-6x^3y^2\right)=3x^2y^2\left(3-2x\right)\left(x-2\right)\\ b,=5x\left(x^2-y^2\right)+20x\left(x+y\right)=5x\left(x-y\right)\left(x+y\right)+20x\left(x+y\right)\\ =5\left(x+y\right)\left(x^2-xy+4x\right)\\ c,=8x^2+2x-12x-3=2x\left(4x+1\right)-3\left(4x+1\right)=\left(2x-3\right)\left(4x+1\right)\)
1.
a) \(2x^4-4x^3+2x^2\)
\(=2x^2\left(x^2-2x+1\right)\)
\(=2x^2\left(x-1\right)^2\)
b) \(2x^2-2xy+5x-5y\)
\(=\left(2x^2-2xy\right)+\left(5x-5y\right)\)
\(=2x\left(x-y\right)+5\left(x-y\right)\)
\(=\left(x-y\right)\cdot\left(2x+5\right)\)
2 .
a,
\(4x\left(x-3\right)-x+3=0\)
⇒\(4x\left(x-3\right)-\left(x-3\right)=0\)
⇒\(\left(x-3\right)\left(4x-1\right)=0\)
⇒\(\left[{}\begin{matrix}x-3=0\\4x-1=0\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}x=3\\4x=1\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}x=3\\x=\dfrac{1}{4}\end{matrix}\right.\)
vậy \(x\in\left\{3;\dfrac{1}{4}\right\}\)
b,
\(\)\(\left(2x-3\right)^2-\left(x+1\right)^2=0\)
⇒\(\left(2x-3-x-1\right)\left(2x-3+x+1\right)\) = 0
⇒\(\left(x-4\right)\left(3x-2\right)=0\)
⇔\(\left[{}\begin{matrix}x-4=0\\3x-2=0\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}x=4\\3x=2\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}x=4\\x=\dfrac{2}{3}\end{matrix}\right.\)
vậy \(x\in\left\{4;\dfrac{2}{3}\right\}\)