Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
\(1,\\ 1,=15\left(x+y\right)\\ 2,=4\left(2x-3y\right)\\ 3,=x\left(y-1\right)\\ 4,=2x\left(2x-3\right)\\ 2,\\ 1,=\left(x+y\right)\left(2-5a\right)\\ 2,=\left(x-5\right)\left(a^2-3\right)\\ 3,=\left(a-b\right)\left(4x+6xy\right)=2x\left(2+3y\right)\left(a-b\right)\\ 4,=\left(x-1\right)\left(3x+5\right)\\ 3,\\ A=13\left(87+12+1\right)=13\cdot100=1300\\ B=\left(x-3\right)\left(2x+y\right)=\left(13-3\right)\left(26+4\right)=10\cdot30=300\\ 4,\\ 1,\Rightarrow\left(x-5\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\\ 2,\Rightarrow\left(x-7\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ 3,\Rightarrow\left(3x-1\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=4\end{matrix}\right.\\ 4,\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
\(4x\left(x+1\right)^2-5x^2\left(x+1\right)-4\left(x+1\right) =\left(x+1\right)\left[4x\left(x+1\right)-5x^2-4\right]=\left(x+1\right)\left(4x^2+4x-5x^2-4\right)=\left(x+1\right)\left(-x^2+4x-4\right)=-\left(x+1\right)\left(x-2\right)^2\)
\(4x\left(x+1\right)^2-5x^2\left(x+1\right)-4\left(x+1\right)\)
\(=4x\left(x^2+2x+1\right)-5x^2\left(x+1\right)-4\left(x+1\right)\)
\(=4x^3+8x^2+4x-5x^3-5x-4x-4\)
\(=-x^3+8x^2-5x-4\)
\(x^4+1\)
\(=x^4+2x^2+1-2x^2\)
\(=\left(x^2+1\right)^2-\left(x\sqrt{2}\right)^2\)
\(=\left(x^2-x\sqrt{2}+1\right)\left(x^2+x\sqrt{2}+1\right)\)
______
\(4x^4y^4+1\)
\(=4x^4y^4+4x^2y^2+1-4x^2y^2\)
\(=\left(2x^2y^2+1\right)^2-\left(2xy\right)^2\)
\(=\left(2x^2y^2-2xy+1\right)\left(2x^2y^2+2xy+1\right)\)
______
\(x^4+3x^2+4\)
\(=x^4+x^3+2x^2-x^3-x^2-2x+2x^2+2x+4\)
\(=\left(x^4+x^3+2x^2\right)-\left(x^3+x^2+2x\right)+\left(2x^2+2x+4\right)\)
\(=x^2\left(x^2+x+2\right)-x\left(x^2+x+2\right)+2\left(x^2+x+2\right)\)
\(=\left(x^2+x+2\right)\left(x^2-x+2\right)\)
______
\(x^2+3xy+2y^2\)
\(=x^2+xy+2xy+2y^2\)
\(=x\left(x+y\right)+2y\left(x+y\right)\)
\(=\left(x+2y\right)\left(x+y\right)\)
\(x^2\left(1-x^2\right)-4-4x^2=x^2\left(1-x\right)\left(1+x\right)-4\left(1+x^2\right)\)
Đến đấy tách thế nào đây ( đề sai hả )
\(4x^4+4x^2+1=\left(2x^2+1\right)^2\)
\(9x^4-6x^2+1=\left(3x^2-1\right)^2\)
\(\dfrac{x^2}{9}-\dfrac{2}{3}x+1=\left(\dfrac{x}{3}+1\right)^2\)
\(x^2-25=\left(x-5\right)\left(x+5\right)\)
\(x^2\left(1-x^2\right)-4-4x^2\)
\(=-x^4+x^2-4-4x^2\)
\(=-\left(x^4+4+4x^2-x^2\right)\)
\(=-\left(\left(x^2+2\right)^2-x^2\right)\)
\(=-\left(x^2+2-x\right)\left(x^2+2+x\right)\)