Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, = [(x-2).(x+1)]^2+(x-2)^2
= (x-2)^2.(x+1)^2+(x-2)^2
= (x-2)^2.[(x+1)^2+1]
= (x-2)^2.(x^2+2x+2)
Tk mk nha
b) \(6x^5+15x^4+20x^3+15x^2+6x+1\)
\(=6x^5+3x^4+12x^4+6x^3+14x^3+7x^2+8x^2+4x+2x+1\)
\(=\left(2x+1\right)\left(3x^4+6x^3+7x^2+4x+1\right)\)
\(=\left(2x+1\right)\left(3x^4+3x^3+3x^2+3x^3+3x^2+3x+x^2+x+1\right)\)
\(=\left(2x+1\right)\left(x^2+x+1\right)\left(3x^2+3x+1\right)\)
b mk thấy nó sai đề sao ý
c) \(C=\left(x^2+x+4\right)^2+8x\left(x^2+x+4\right)+15x^2\)
\(=\left(x^2+x+4\right)^2+2.4x.\left(x^2+x+4\right)+16x^2-x^2\)
\(=\left(x^2+x+4+4x\right)^2-x^2\)
\(=\left(x^2+5x+4\right)^2-x^2\)
\(=\left(x^2+5x+4-x\right)\left(x^2+5x+4+x\right)=\left(x^2+4x+4\right)\left(x^2+6x+4\right)\)
a) \(x^5+4x+5=\left(x^5+x^4\right)-\left(x^4+x^3\right)+\left(x^3+x^2\right)-\left(x^2+x\right)+\left(5x+5\right)=x^4\left(x+1\right)-x^3\left(x+1\right)+x^2\left(x+1\right)-x\left(x+1\right)+5\left(x+1\right)=\left(x^4-x^3+x^2-x+5\right)\left(x+1\right)\)
b) \(x^4+6x^3+11x^2+6x+1=\left(x^4+3x^3+x^2\right)+\left(3x^3+9x^2+3x\right)+\left(x^2+3x+1\right)=x^2\left(x^2+3x+1\right)+3x\left(x^2+3x+1\right)+\left(x^2+3x+1\right)=\left(x^2+3x+1\right)^2\)
c) \(64x^4+1=\left[\left(8x^2\right)^2+16x^2+1\right]-16x^2=\left(8x^2+1\right)^2-\left(4x\right)^2=\left(8x^2-4x+1\right)\left(8x^2+4x+1\right)\)d) \(81x^4+4=\left[\left(9x^2\right)^2+36x^2+2^2\right]-36x^2=\left(9x^2+2\right)^2-\left(6x\right)^2=\left(9x^2-6x+2\right)\left(9x^2+6x+2\right)\)
a)\(A=\left(x^2-2x\right)\left(x^2-2x-1\right)-6=\left(x^2-2x\right)^2-\left(x^2-2x\right)-6\)
\(=\left(x^2-2x+2\right)\left(x^2-2x+3\right)\)
a)\(\left(x^2-x+2\right)^2+\left(x-2\right)^2\)
\(=x^4-2x^3+6x^2-8x+8\)
\(=x^4-2x^3+2x^2+4x^2-8x+8\)
\(=x^2\left(x^2-2x+2\right)+4\left(x^2-2x+2\right)\)
\(=\left(x^2+4\right)\left(x^2-2x+2\right)\)
b)\(6x^5+15x^4+20x^3+15x^2+6x+1\)
\(=6x^5+3x^4+12x^4+6x^3+14x^3+7x^2+8x^2+4x+2x+1\)
\(=3x^4\left(2x+1\right)+6x^3\left(2x+1\right)+7x^2\left(2x+1\right)+4x\left(2x+1\right)+\left(2x+1\right)\)
\(=\left(3x^4+6x^3+7x^2+4x+1\right)\left(2x+1\right)\)
\(=\left[3x^4+3x^3+x^2+3x^3+3x^2+x+3x^2+3x+1\right]\left(2x+1\right)\)
\(=\left[x^2\left(3x^2+3x+1\right)+x\left(3x^2+3x+1\right)+\left(3x^2+3x+1\right)\right]\left(2x+1\right)\)
\(=\left(x^2+x+1\right)\left(3x^2+3x+1\right)\left(2x+1\right)\)
\(x^8+x^4+1\)
\(=\left(x^8+2x^4+1\right)-x^4\)
\(=\left(x^4+1\right)^2-x^4\)
\(=\left(x^4+1-x^2\right)\left(x^4+1+x^2\right)\)
\(=\left(x^4-x^2+1\right)\left(x^4+2x^2-x^2+1\right)\)
\(=\left(x^4-x^2+1\right)[\left(x^2+1\right)^2-x^2]\)
\(=\left(x^4-x^2+1\right)\left(x^2+1-x\right)\left(x^2+1+x\right)\)
a) \(\left(x^2-x+2\right)^2+\left(x-2\right)^2\)
\(=x^4+x^2+4-2x^3-4x+4x^2+x^2-4x+4\)
\(=x^4-2x^3+6x^2-8x+8\)
\(=x^4-2x^3+2x^2+4x^2-8x+8\)
\(=x^2\left(x^2-2x+2\right)+4\left(x^2-2x+2\right)\)
\(=\left(x^2+4\right)\left(x^2-2x+2\right)\)
b) \(6x^5+15x^4+20x^3+15x^2+6x+1\)
\(=6x^5+3x^4+12x^4+6x^3+14x^3+7x^2+8x^2+4x+2x+1\)
\(=3x^4\left(2x+1\right)+6x^3\left(2x+1\right)+7x^2\left(2x+1\right)+4x\left(2x+1\right)+2x+1\)
\(=\left(2x+1\right)\left(4x^4+6x^3+7x^2+4x+1\right)\)
\(=\left(2x+1\right)\left(3x^4+3x^3+3x^2+3x^3+3x^2+3x+x^2+x+1\right)\)
\(=\left(2x+1\right)\left[\left(3x^2\right)\left(x^2+x+1\right)+3x\left(x^2+x+1\right)+\left(x^2+x+1\right)\right]\)
\(=\left(2x+1\right)\left(x^2+x+1\right)\left(3x^2+3x+1\right)\)
\(6x^5+15x^4+20x^3+15x^2+6x+1 \)
\(=6x^5+3x^4+12x^4+6x^3+14x^3+7x^2+8x^2+4x+2x+1\)
\(=\left(2x+1\right)\left(3x^4+6x^3+7x^2+4x+1\right)\)
\(=\left(2x+1\right)\left(3x^4+3x^3+3x^2+3x^3+3x^2+x^2+x+1\right)\)
\(=\left(2x+1\right)\left(x^2+x+1\right)\left(3x^2+3x+1\right)\)