Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta cs a/b=c/d=>a/c=b/d
=>2a+3b/2c+3d=3a-4b/3c-4d
=>2a+3b/3a-4b=2c+3d/3c-4d
=>bai toan dc c/m
Cau b tuong tu nha ban
don't forget tick me
a) Ta có \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{c}=\frac{b}{d}=\frac{2a}{2c}=\frac{3b}{3d}=\frac{2a+3b}{2c+3d}\) (1).
\(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{4b}{4d}=\frac{3a-4b}{3c-4d}\) (2).
Từ (1) và (2) \(\Rightarrow\frac{2a+3b}{2c+3d}=\frac{3a-4b}{3c-4d}.\)
\(\Rightarrow\frac{2a+3b}{3a-4b}=\frac{2c+3d}{3c-4d}\left(đpcm\right).\)
Chúc bạn học tốt!
Lời giải:
Ta có:
$2a^2+2b^2+2c^2=2ab+2bc+2ac$
$\Rightarrow 2a^2+2b^2+2c^2-2ab-2bc-2ac=0$
$\Rightarrow (a^2+b^2-2ab)+(b^2+c^2-2bc)+(c^2+a^2-2ac)=0$
$\Rightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$
Ta thấy: $(a-b)^2\geq 0; (b-c)^2\geq 0; (c-a)^2\geq 0$ với mọi $a,b,c$
Do đó để tổng của chúng bằng $0$ thì:
$(a-b)^2=(b-c)^2=(c-a)^2=0$
$\Rightarrow a=b=c$
Khi đó: \(N=(1+\frac{a}{b})(1+\frac{b}{c})(1+\frac{c}{a})=(1+1)(1+1)(1+1)=8\)
2a^2b + 4ab^2 -a^2c + ac^2 -4b^2c +2bc^2 - 4abc
= (2a^2b - 4abc + 2bc^2) + (4ab^2 - 4b^2c) - (a^2c - ac^2)
= 2b(a^2 - 2ac + c^2) + 4b^2(a - c) - ac(a - c)
= 2b(a - c)^2 + 4b^2(a - c) - ac(a - c)
= (a - c) [ 2b(a - c) + 4b^2 - ac ]
= (a - c) (2ab -2bc +4b^2 - ac)
= (a - c) [ (2ab - ac) + (4b^2 - 2bc) ]
= (a - c) [a(2b - c) + 2b(2b - c)]
= (a - c)(2b - c)(a + 2b)
TL:
=\(\left(2a^2b-4bc+2bc^2\right)+\left(4ab^2-4b^2c\right)-\left(a^2c-ac2\right)\)
=\(2b\left(a^2-2c+c^2\right)+4b^2\left(a-c\right)-ac\left(a-c\right)\)
=\(2b\left(a-c\right)+4b^2\left(a-c\right)-ac\left(a-c\right)\)
=\(\left(a-c\right)\left(2b+4b^2-ac\right)\)
........................
Vậy......