K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2021

\(B=a\left(b^3-c^3\right)+b\left(c^3-a^3\right)+c\left(a^3-b^3\right)=ab^3-ac^3+bc^3-ba^3+ca^3-cb^3=ab\left(b^2-a^2\right)-c^3\left(a-b\right)+c\left(a^3-b^3\right)=-ab\left(a-b\right)\left(a+b\right)-c^3\left(a-b\right)+c\left(a-b\right)\left(a^2+ab+b^2\right)=\left(a-b\right)\left(-a^2b+ab^2-c^3+a^2c+abc+b^2c\right)\)

\(C=ab\left(a+b\right)-bc\left(b+c\right)+ac\left(a-c\right)=ab\left(a+b\right)-bc\left(a+b-a+c\right)+ac\left(a-c\right)=ab\left(a+b\right)-bc\left(a+b\right)+bc\left(a-c\right)+ac\left(a-c\right)=b\left(a+b\right)\left(a-c\right)+c\left(a-c\right)\left(a+b\right)=\left(a+b\right)\left(a-c\right)\left(b+c\right)\)

\(D=ab\left(a+b\right)+bc\left(b+c\right)+ac\left(c+a\right)+3abc=ab\left(a+b\right)+abc+bc\left(b+c\right)+abc+ac\left(c+a\right)+abc=ab\left(a+b+c\right)+bc\left(a+b+c\right)++++ac\left(a+b+c\right)=\left(a+b+c\right)\left(ab+bc+ca\right)\)

23 tháng 8 2021

D=ab(a+b)+bc(b+c)+ac(c+a)+3abc
= ab(a+b)+abc+bc(b+c)+abc+ac(c+a)+abc
= ab(a+b+c)+bc(b+c+a)+ac(c+a+b)
=( ab+bc+ac)(a+b+c)

15 tháng 7 2018

c)   \(a^2b^2\left(a-b\right)+b^2c^2\left(b-c\right)+c^2a^2\left(c-a\right)\)

\(=a^2b^2\left(a-b\right)+b^2c^2\left(b-c\right)-c^2a^2\left[\left(a-b\right)+\left(b-c\right)\right]\)

\(=a^2b^2\left(a-b\right)+b^2c^2\left(b-c\right)-c^2a^2\left(a-b\right)-c^2a^2\left(b-c\right)\)

\(=\left(a-b\right)\left(a^2b^2-c^2a^2\right)+\left(b-c\right)\left(b^2c^2-c^2a^2\right)\)

\(=a^2\left(a-b\right)\left(b-c\right)\left(b+c\right)+c^2\left(b-c\right)\left(b-a\right)\left(a+b\right)\)

\(=\left(a-b\right)\left(b-c\right)\left[a^2\left(b+c\right)-c^2\left(a+b\right)\right]\)

\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\left(ab+bc+ca\right)\)

15 tháng 7 2018

Giúp tôi ! Làm ơn đi.....Help me@@

a) ta có: ab(a-b) + bc((b-a)+(a-c)) +ac(c-a) 

=ab(a-b) -bc(a-b) -bc(c-a) +ac(c-a) 
=(a-b)(ab-bc) +(c-a)(ac-bc) 
=(a-b) b (a-c) + (c-a) c (a-b) 
=(a-b)(a-c)(b-c) 

B),C),D) tương tự

ok mk nha!! 5645676577962353446456575675878768766734644565565464565575346456

25 tháng 8 2020

(a+b)(b+c)(a-c)

24 tháng 10 2021

\(a,\) Đặt \(A=\left(a+b+c\right)^3-a^3-b^3-c^3\)

Với \(a=-b\) ta được \(A=0\)

Do vai trò bình đẳng của a,b,c và A bậc 3 nên nhân tử còn lại là hằng số k

Do đó \(A=k\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Cho \(a=b=c=1\Leftrightarrow3^3-1-1-1=8k\Leftrightarrow k=3\)

Do đó \(A=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(b,\) Đặt \(B=a^3\left(b-c\right)+b^3\left(c-a\right)+c^3\left(a-b\right)\)

Với \(a=b\Leftrightarrow B=0\)

Do vai trò bình đẳng của a,b,c và B bậc 4 nên \(B=\left(a-b\right)\left(b-c\right)\left(c-a\right)Q\) trong đó Q bậc nhất

Do đó \(Q=\left(a+b+c\right)R\) với R là hằng số

\(\Leftrightarrow B=\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)R\)

Cho \(a=1;b=2;c=3\Leftrightarrow-12=12R\Leftrightarrow R=-1\)

Do đó \(B=-\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)\)

\(c,\) Đặt \(C=\left(a+b+c\right)^5-a^5-b^5-c^5\)

Cho \(a=-b\Leftrightarrow C=0\)

Do vai trò bình đẳng của a,b,c và C bậc 5 nên \(C=\left(a+b\right)\left(b+c\right)\left(c+a\right)P\) trong đó P bậc 2

Do đó \(P=\left(a^2+b^2+c^2+ab+bc+ca\right)R\) với R là hằng số

\(\Leftrightarrow C=\left(a+b\right)\left(b+c\right)\left(c+a\right)\left(a^2+b^2+c^2+ab+bc+ca\right)R\)

Cho \(a=1;b=2;c=3\Leftrightarrow7500=1500R\Leftrightarrow R=5\)

Do đó \(C=5\left(a+b\right)\left(b+c\right)\left(c+a\right)\left(a^2+b^2+c^2+ab+bc+ca\right)\)

24 tháng 10 2021

\(d,\) Đặt \(D=2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4\)

Với \(a=b+c\Leftrightarrow D=0\)

Do vai trò bình đẳng của a,b,c và D bậc 4 nên \(D=\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)R\) với R bậc nhất

Do đó \(R=\left(a+b+c\right)Q\) với Q là hằng số

\(\Leftrightarrow D=\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)\left(a+b+c\right)Q\)

Cho \(a=b=c=1\Leftrightarrow Q=1\)

Do đó \(D=\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)\left(a+b+c\right)\)

a:

\(a^3+a^2c-abc+b^2c+b^3\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)\)

\(=\left(a^2-ab+b^2\right)\left(a+b+c\right)=0\)(vì a+b=c=0)

câu b bn xem ở link này nha!

Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

a: \(=2x^4+2x^3+3x^3+3x^2+10x^2+10x+15x+15\)

\(=\left(x+1\right)\left(2x^3+3x^2+10x+15\right)\)

\(=\left(x+1\right)\left(2x+3\right)\left(x^2+5\right)\)

b: \(x^4+3x^3+x^2-12x-20\)

\(=x^4-2x^3+5x^3-10x^2+11x^2-22x+10x-20\)

\(=\left(x-2\right)\left(x^3+5x^2+11x+10\right)\)

\(=\left(x-2\right)\left(x^3+2x^2+3x^2+6x+5x+10\right)\)

\(=\left(x-2\right)\left(x+2\right)\left(x^2+3x+5\right)\)

c: \(=\left(a+b-a+b\right)\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)

\(=2b\left(a^2+2ab+b^2+a^2-b^2+a^2-2ab+b^2\right)\)

\(=2b\left(3a^2+b^2\right)\)

d: \(=\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)

f: \(x^3-19x-30\)

\(=x^3-5x^2+5x^2-25x+6x-30\)

\(=\left(x-5\right)\left(x^2+5x+6\right)\)

\(=\left(x-5\right)\left(x+2\right)\left(x+3\right)\)

10 tháng 8 2016

ai có thể giảng cho mình dạng toán tìm số tự nhiên thỏa mãn đièu kiện chia hết ko

hãy nêu ra cách giải cụ thể cho câu sau 3a-11 chia hết cho a+2 tìm a

18 tháng 9 2018

\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

\(=\left(a+b+c\right)\left(ab+bc\right)+\left(a+b+c\right)ac-abc\)

\(=\left(ab+b^2+bc\right)\left(a+c\right)+\left(a+c\right)ac+abc-abc\)

\(=\left(a+c\right)\left(ab+b^2+bc+ac\right)\)

\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)