Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+9x^2+26x+24\)
\(=x^3+3x^2+6x^2+18x+8x+24\)
\(=\left(x^3+3x^2\right)+\left(6x^2+18x\right)+\left(8x+24\right)\)
\(=x^2\left(x+3\right)+6x\left(x+3\right)+8\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2+6x+8\right)\)
\(=\left(x+3\right)\left(x^2+2x+4x+8\right)\)
\(=\left(x+3\right)\left[\left(x^2+2x\right)+\left(4x+8\right)\right]\)
\(=\left(x+3\right)\left[x\left(x+2\right)+4\left(x+2\right)\right]\)
\(=\left(x+3\right)\left(x+2\right)\left(x+4\right)\)
\(15^3+29x^2-8x-12=15x^3+30x^2-x^2-2x-6x-12\)
= \(15x^2.\left(x+2\right)-x.\left(x+2\right)-6.\left(x+2\right)\)= \(\left(x+2\right).\left(15x^2-x-6\right)\)
= \(\left(x+2\right).\left(15x^2-10x+9x-6\right)\)= \(\left(x+2\right).\left(3x-2\right).\left(5x+3\right)\)
\(x^3+9x^2+26x+24=x^3+3x^2+6x^2+18x+8x+24\)\(=x.^2\left(x+3\right)+6x.\left(x+3\right)+8.\left(x+3\right)\)\(=\left(x+3\right).\left(x^2+6x+8\right)\)\(\left(x+3\right).\left(x^2+2x+4x+8\right)=\left(x+2\right).\left(x+3\right).\left(x+4\right)\)
Ta có : 15x3 + 29x2 - 8x - 12
= 15x3 + 30x2 - x2 - 8x - 12
= 15x(x + 2) - (8x + 16) - (x2 - 4)
= 15x(x + 2) - 8(x + 2) - (x - 2)(x + 2)
= (x + 2)(15x - 8 - x + 2)
= (x + 2) (14x - 6)
click zô nha >_<
Ta có : 15x3 + 29x2 - 8x - 12
= 15x3 + 30x2 - x2 - 8x - 12
= 15x(x + 2) - (8x + 16) - (x2 - 4)
= 15x(x + 2) - 8(x + 2) - (x - 2)(x + 2)
= (x + 2)(15x - 8 - x + 2)
= (x + 2) (14x - 6)
a, = (x^3-x^2)-(4x^2-4x)+(4x-4)
= (x-1).(x^2-4x+4) = (x-1).(x-2)^2
b, = (x^3+x^2)-(10x^2+10x)+(16x+16)
= (x+1).(x^2-10x+16)
= (x+1).[ (x^2-2x)-(8x-16) ] = (x+1).(x-2).(x-8)
k mk nha
a)= (x^3-x^2)-(4x^2-4x)+(4x-4)
= (x-1).(x^2-4x+4)
= (x-1).(x-2)^2
b)= (x^3+x^2)-(10x^2+10x)+(16x+16)
= (x+1).(x^2-10x+16)
= (x+1).[ (x^2-2x)-(8x-16) ]
= (x+1).(x-2).(x-8)
P/s tham khảo nha
a) \(4x^4+4x^3-x^2-x=4x^3\left(x+1\right)-x\left(x+1\right)\)
\(=\left(4x^3-x\right)\left(x+1\right)=x\left(4x^2-1\right)\left(x+1\right)\)
\(=x\left\{\left(2x\right)^2-1\right\}\left(x+1\right)=x\left(2x-1\right)\left(2x+1\right) \left(x+1\right)\)
c) \(x^4-4x^3+8x^2-16x+16=x^4+8x^2+16-\left(4x^3+16x\right)\)
\(=\left(x^2+4\right)^2-4x\left(x^2+4\right)=\left(x^2-4x+4\right)\left(x^2+4\right)=\left(x-2\right)^2\left(x^2+4\right)\)
b) \(x^6-x^4-9x^3+9x^2=x^4\left(x^2-1\right)-\left(9x^3-9x^2\right)\)
\(=x^4\left(x-1\right)\left(x+1\right)-9x^2\left(x-1\right)\)
\(=\left(x^5+x^4-9x^2\right)\left(x-1\right)=\left(x-1\right)x^2\left(x^3+x^2-9\right)\)
\(2x-1^3+8\)
\(=2x-9\)
\(=\left(\sqrt{2x}\right)^2-3^2\)
\(=\left(\sqrt{2x}-3\right)\left(\sqrt{2x}+3\right)\)
_________
\(8x^3-12x^2+6x-1\)
\(=\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot1+3\cdot2x\cdot1^2-1^3\)
\(=\left(2x-1\right)^3\)
_______________
\(8x^3-12x^2+6x-2\)
\(=8x^3-12x^2+6x-1-1\)
\(=\left(2x-1\right)^3-1\)
\(=\left(2x-1-1\right)\left(4x^2-4x+1+2x-1+1\right)\)
\(=\left(2x-2\right)\left(4x^2-2x+1\right)\)
\(=2\left(x-1\right)\left(4x^2-2x+1\right)\)
________
\(9x^3-12x^2+6x-1\)
\(=x^3+8x^3-12x^2+6x-1\)
\(=x^3+\left(2x-1\right)^3\)
\(=\left(x+2x-1\right)\left(x^2-2x^2-x+4x^2-4x+1\right)\)
\(=\left(3x-1\right)\left(3x^2-5x+1\right)\)
b: 8x^3-12x^2+6x-1
=(2x)^3-3*(2x)^2*1+3*2x*1^2-1^3
=(2x-1)^3
c: =(8x^3-12x^2+6x-1)-1
=(2x-1)^3-1
=(2x-1-1)[(2x-1)^2+2x-1+1]
=2(x-1)(4x^2-4x+1+2x)
=2(x-1)(4x^2-2x+1)
a, = (x-2)^2 . (x+3)
b, = (x-5)^2.(x+1)
c, = (2x-3).(x^2+3x+5)