Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách thông dụng nhất:
a3+b3+c3−3abca3+b3+c3−3abc
=a3+3ab(a+b)+b3+c3−3abc−3ab(a+b)=a3+3ab(a+b)+b3+c3−3abc−3ab(a+b)
=(a+b)3+c3−3ab(a+b+c)=(a+b)3+c3−3ab(a+b+c)
=(a+b+c)(a2+2ab+b2−ab−ac+c2)−3ab(a+b+c)=(a+b+c)(a2+2ab+b2−ab−ac+c2)−3ab(a+b+c)
=(a+b+c)(a2+b2+c2−ab−bc−ca)=(a+b+c)(a2+b2+c2−ab−bc−ca)
=(x+y)^3-3xy(x+y)-3xyz+z^3
=((x+y)^3-3xy(x+y+z)+(x+y+z)[(x+y)^2-(x+y)z+z^2]ư
=(x+y+z)[(x+y)^2-(x+y)z+z^2-3xy]
=(x+y+z)(x^2+y^2+z^2+xy+yz+zx)
=(a+b)^3 +c^3 - 3abc - 3ab ( a+b )
= (a+b+c)((a+b)^2 - (a+b)*c + c^2) -3ab(a+b+c)
=(a+b+c)(a^2+ 2ab + b^2 - ac-bc+c^2)-3ab(a+b+c)
=(a+b+c)(a^2+b^2+c^2-ac-bc+2ab-3abc)
=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)
\(a\left(b^3-c^3\right)+b\left(c^3-a^3\right)+c\left(a^3-b^3\right)\)
\(=ab^3-ac^3+bc^3-a^3b+a^3c-b^3c\)
\(=\left(ab^3-a^3b\right)+\left(bc^3-ac^3\right)+\left(a^3c-b^3c\right)\)
\(=ab\left(b^2-a^2\right)-c^3\left(a-b\right)+c\left(a^3-b^3\right)\)
\(=-ab\left(a-b\right)\left(a+b\right)-c^3\left(a-b\right)+c\left(a-b\right)\left(a^2-ab+b^2\right)\)
\(=\left(a-b\right)\left(-a^2b-ab^2-c^3+a^2c-abc+b^2c\right)\)
a3(b−c)+b3(c−a)+c3(a−b)
=a3b−a3c+b3c−b3a+c3(a−b)
=(a3b−b3a)−(a3c−b3c)+c3(a−b)
=ab(a2−b2)−c(a3−b3)+c3(a−b)
=ab(a−b)(a+b)−c(a−b)(a2+ab+b2)+c3(a−b)
=(a−b)[ab(a+b)−c(a2+ab+b2)+c3]
=(a−b)(a2b+ab2−a2c−abc−b2c+c3)
=(a−b)[(a2b−a2c)+(ab2−abc)−(b2c−c3)]
=(a−b)[a2(b−c)+ab(b−c)−c(b2−c2)]
=(a−b)[a2(b−c)+ab(b−c)−c(b−c)(b+c)]
=(a−b)(b−c)[a2+ab−c(b+c)]
=(a−b)(b−c)(a2+ab−bc−c2)
=(a−b)(b−c)[(a−c)(a+c)+b(a−c)]
=(a−b)(b−c)(a−c)(a+b+c)
Đặt \(\left\{{}\begin{matrix}a+b-c=x\\b+c-a=y\\c+a-b=z\end{matrix}\right.\Leftrightarrow x+y+z=a+b+c\)
Do đó \(A=\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(\Leftrightarrow A=x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)-x^3-y^3-z^3\\ \Leftrightarrow A=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
\(\Leftrightarrow A=3\left(a+b-c+b+c-a\right)\left(b+c-a+c+a-b\right)\left(c+a-b+a+b-c\right)\\ \Leftrightarrow A=3\cdot2b\cdot2c\cdot2a=24abc\)
Sai đề rồi mình sữ lại nhá \(a^3\left(b-c\right)+b^3\left(c-a\right)+c^3\left(a-b\right)\)
=>\(a^3\left(b-c\right)-b^3\left(a-c\right)+c^3\left(a-b\right)\)
\(\Rightarrow a^3\left(b-c\right)-b^3\left(b-c+a-b\right)+c^3\left(a-b\right)\)
\(\Rightarrow a^3\left(b-c\right)-b^3\left[\left(b-c\right)+\left(a-b\right)\right]+c^3\left(a-b\right)\)\(\Rightarrow a^3\left(b-c\right)-b^3\left(b-c\right)-b^3\left(a-b\right)+c^3\left(a-b\right)\)
\(\Rightarrow\left(b-c\right)\left(a^3-b^3\right)+\left(a-b\right)\left(c^3-b^3\right)\Rightarrow\left(b-c\right)\left(a-b\right)\left(a^2+ab+b^2\right)-\left(a-b\right)\left(b^3-c^3\right)\)
\(\Rightarrow\left(b-c\right)\left(a-b\right)\left(a^2+ab+b^2\right)-\left(a-b\right)\left(b-c\right)\left(b^2+bc+c^2\right)\)
\(\Rightarrow\left(a-b\right)\left(b-c\right)\left(a^2+ab+b^2-b^2-bc-c^2\right)\Rightarrow\left(a-b\right)\left(b-c\right)\left[\left(a-c\right)\left(a+c\right)+b\left(a-c\right)\right]\Rightarrow\left(a-b\right)\left(b-c\right)\left(a-c\right)\left(a+b+c\right)\)
Chúc bạn học tốt . Chọn mình nha .