Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách thông dụng nhất:
a3+b3+c3−3abca3+b3+c3−3abc
=a3+3ab(a+b)+b3+c3−3abc−3ab(a+b)=a3+3ab(a+b)+b3+c3−3abc−3ab(a+b)
=(a+b)3+c3−3ab(a+b+c)=(a+b)3+c3−3ab(a+b+c)
=(a+b+c)(a2+2ab+b2−ab−ac+c2)−3ab(a+b+c)=(a+b+c)(a2+2ab+b2−ab−ac+c2)−3ab(a+b+c)
=(a+b+c)(a2+b2+c2−ab−bc−ca)=(a+b+c)(a2+b2+c2−ab−bc−ca)
=(x+y)^3-3xy(x+y)-3xyz+z^3
=((x+y)^3-3xy(x+y+z)+(x+y+z)[(x+y)^2-(x+y)z+z^2]ư
=(x+y+z)[(x+y)^2-(x+y)z+z^2-3xy]
=(x+y+z)(x^2+y^2+z^2+xy+yz+zx)
Ta có
a3+b3+c3-3abc
=(a+b)3-3ab(a+b)+c3-3abc
=[(a+b)3+c3]-3ab(a+b+c)
=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)
=(a=b+c)(a2+2ab+b2-ac-bc+c2)-3ab(a+b+c)
=(a+b+c)(a2+2ab+b2-ac-bc+c2-3ab)
=(a+b+c)(a2+b2+c2-ab-ac-bc)
\(a^3-b^3-c^3-3abc\)
\(=\left(a-b\right)^3-c^3-3abc+3a^2b-3ab^2\)
\(=\left[\left(a-b\right)^3-c^3\right]-3ab\left(c-a+b\right)\)
\(=-\left[c^3-\left(a-b\right)^3\right]-3ab\left(c-a+b\right)\)
\(=-\left(c-a+b\right)\left[c^2+c\left(a-b\right)+\left(a-b\right)^2\right]-3ab\left(c-a+b\right)\)
\(=-\left(c-a+b\right)\left(c^2+ac-cb+a^2-2ab+b^2+3ab\right)\)
\(=-\left(c-a+b\right)\left(c^2+ac-cb+a^2+ab+b^2\right)\)
Thay a^3+b^3=(a+b)^3 -3ab(a+b) .Ta có :
Biến đổi vế trái thành:
a^3+b^3+c^3-3abc
<=>(a+b)^3 -3ab(a+b) +c^3 - 3abc
<=>[(a+b)^3 +c^3] -3ab.(a+b+c)
<=>(a+b+c). [(a+b)^2 -c.(a+b)+c^2] -3ab(a+b+c)
<=>(a+b+c).(a^2+2ab+b^2-ca-cb+c^2-3ab
<=>(a+b+c).(a^2+b^2+c^2-ab-bc-ca)
ta có :
\(a^3+c^3=\left(a+c\right)^3-3ac\left(a+c\right)\)
nên \(a^3+c^3-b^3+3abc=\left(a+c\right)^3-b^3-3ac\left(a+c-b\right)\)
\(=\left(a+c-b\right)\left[\left(a+c\right)^2+b\left(a+c\right)+b^2-3ac\right]=\left(a+c-b\right)\left(a^2+b^2+c^2+ab+bc-ac\right)\)
b. tương tự ta có :
\(a^3-b^3-c^3-3abc=a^3-\left(b+c\right)^3+3bc\left(b+c-a\right)\)
\(=\left(a-b-c\right)\left[a^2+a\left(b+c\right)+\left(b+c\right)^2-3bc\right]=\left(a-b-c\right)\left(a^2+b^2+c^2+ab+ac-bc\right)\)
c. ta có : \(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3=\left(x-z+z-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)
\(=\left(x-z\right)^3+3\left(x-z\right)\left(z-y\right)\left(x-y\right)+\left(z-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)
\(=3\left(x-z\right)\left(z-y\right)\left(x-y\right)\)
\(a^3+b^3-c^3+3abc\)
\(=a^3+3ab.\left(a+b\right)+b^3-c^3-3abc-3ab.\left(a+b\right)\)
\(=\left(a+b\right)^3+c^3-3ab.\left(a+b-c\right)\)
\(=\left(a+b+c\right).\left(a^2+ab+b^2-ab-ac+c^2\right)-3ab.\left(a+b+c\right)\)
\(=\left(a+b+c\right).\left(a^2+b^2+c^2-ab-bc-ca\right)\)
Câu hỏi của Bắp Ngô - Toán lớp 8 - Học toán với OnlineMath
Tham khảo
a3+b3+c3-3abc=(a+b)3+c3-3a2b-3ab2-3abc
=(a+b+c)[(a+b)2-(a+b).c+c2]-3ab.(a+b+c)
=(a+b+c)(a2+b2+c2-ac-bc-ab)
\(a^3+b^3+c^3-3abc\)
\(=a^3+3a^2b+3ab^2+b^3+c^3-3a^2b-3ab^2-3abc\)
\(=\left(a+b\right)^3+c^3-\left(3a^2b+3ab^2+3abc\right)\)
\(=\left(a+b+c\right)[\left(a+b\right)^2-c\left(a+b\right)+c^2]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-ab\right)\)
a3+b3+c3−3abca^3+b^3+c^3-3abca3+b3+c3−3abc
=a3+3a2b+3ab2+b3+c3−3a2b−3ab2−3abc=a^3+3a^2b+3ab^2+b^3+c^3-3a^2b-3ab^2-3abc=a3+3a2b+3ab2+b3+c3−3a2b−3ab2−3abc
=(a+b)3+c3−(3a2b+3ab2+3abc)=\left(a+b\right)^3+c^3-\left(3a^2b+3ab^2+3abc\right)=(a+b)3+c3−(3a2b+3ab2+3abc)
=(a+b+c)[(a+b)2−c(a+b)+c2]−3ab(a+b+c)=\left(a+b+c\right)[\left(a+b\right)^2-c\left(a+b\right)+c^2]-3ab\left(a+b+c\right)=(a+b+c)[(a+b)2−c(a+b)+c2]−3ab(a+b+c)
=(a+b+c)(a2+2ab+b2−ac−bc+c2)−3ab(a+b+c)=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=(a+b+c)(a2+2ab+b2−ac−bc+c2)−3ab(a+b+c)
=(a+b+c)(a2+2ab+b2−ac−bc+c2−3ab)=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=(a+b+c)(a2+2ab+b2−ac−bc+c2−3ab)
=(a+b+c)(a2+b2+c2−ab−ac−ab)=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-ab\right)=(a+b+c)(a2+b2+c2−ab−ac−ab)
=(a+b)^3 +c^3 - 3abc - 3ab ( a+b )
= (a+b+c)((a+b)^2 - (a+b)*c + c^2) -3ab(a+b+c)
=(a+b+c)(a^2+ 2ab + b^2 - ac-bc+c^2)-3ab(a+b+c)
=(a+b+c)(a^2+b^2+c^2-ac-bc+2ab-3abc)
=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)