K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2016

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=\left(\frac{1}{a}+\frac{1}{b}\right)+\left(\frac{1}{c}-\frac{1}{a+b+c}\right)\)

\(=\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{c\left(a+b+c\right)}\right)=\frac{\left(a+b\right)\left(ab+ac+bc+c^2\right)}{abc\left(a+b+c\right)}\)

\(=\frac{\left(a+b\right)\left(a+c\right)\left(b+c\right)}{abc\left(a+b+c\right)}\)

13 tháng 11 2017

We have : 

\(A=\frac{-2a}{2ab+2a+1}-\frac{b}{bc+b+1}+\frac{c}{-2ac-c-1}\)

\(=\frac{-2a}{2ab+2a+2abc}-\frac{b}{bc+b+1}+\frac{bc}{-2abc-bc-b}\)(\(abc=\frac{1}{2}\))

\(=\frac{-2a}{2a\left(bc+b+1\right)}-\frac{b}{bc+b+1}+\frac{bc}{-\frac{2.1}{2}-bc-b}\)(\(abc=\frac{1}{2}\))

\(=\frac{-1}{bc+b+1}-\frac{b}{bc+b+1}-\frac{bc}{bc+b+1}\)

\(=\frac{-bc-b-1}{bc+b+1}=-1\)

The value of A is - 1 because \(abc=\frac{1}{2}\)

a, \(A=x^2-x\sqrt{y}-2x\sqrt{y}+2y\)

\(=x\left(x-\sqrt{y}\right)-2\sqrt{y}\left(x-\sqrt{y}\right)\)

\(=\left(x-2\sqrt{y}\right)\left(x-\sqrt{y}\right)\)

18 tháng 6 2019

\(a,\)\(A=x^2-3x\sqrt{y}+2y\)

\(=x^2-2x\sqrt{y}-x\sqrt{y}+2y\)

\(=x\left(x-2\sqrt{y}\right)-\sqrt{y}\left(x-2\sqrt{y}\right)\)

\(=\left(x-\sqrt{y}\right)\left(x-2\sqrt{y}\right)\)

\(b,\)Ta có : \(x=\frac{1}{\sqrt{5}-2}=\frac{\sqrt{5}+2}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}=\frac{\sqrt{5}+2}{5-4}=\sqrt{5}+2\)

\(y=\frac{1}{9+4\sqrt{5}}=\frac{9-4\sqrt{5}}{\left(9+4\sqrt{5}\right)\left(9-4\sqrt{5}\right)}=\frac{9-4\sqrt{5}}{81-80}=9-4\sqrt{5}=\left(\sqrt{5}-2\right)^2\)

\(\Rightarrow A=\left[\sqrt{5}+2-\sqrt{\left(\sqrt{5}-2\right)^2}\right]\left[\sqrt{5}+2-2\sqrt{\left(\sqrt{5}-2\right)^2}\right]\)

\(=\left(\sqrt{5}+2-\sqrt{5}-2\right)\left(\sqrt{5}+2-2\sqrt{5}+4\right)\)

\(=4\left(6-\sqrt{5}\right)\)

\(=24-4\sqrt{5}\)

4 tháng 12 2016

\(A=a+b+c-2\left(ab+bc+ca\right)+4abc-\frac{1}{2}\)

\(=\frac{1}{2}\left(2a-1\right)\left(2b-1\right)\left(2c-1\right)\)

từ đây khai triển ra

4 tháng 12 2016

ok, thank you nha

DD
27 tháng 5 2021

Bài 1: 

\(a^2\left(b-2c\right)+b^2\left(c-a\right)+2c^2\left(a-b\right)+abc\)

\(=2c^2\left(a-b\right)+a^2b-ab^2+b^2c-a^2c+abc-a^2c\)

\(=2c^2\left(a-b\right)+ab\left(a-b\right)-c\left(a+b\right)\left(a-b\right)-ac\left(a-b\right)\)

\(=\left(a-b\right)\left(2c^2+ab-ac-cb-ac\right)\)

\(=\left(a-b\right)\left(a-c\right)\left(b-2c\right)\)

DD
27 tháng 5 2021

Bài 2: 

\(x^2+3x+1=0\Leftrightarrow x+\frac{1}{x}=-3\)(vì \(x=0\)không là nghiệm) 

Ta có: 

\(x^3+\frac{1}{x^3}=\left(x+\frac{1}{x}\right)^3-3\left(x+\frac{1}{x}\right).x.\frac{1}{x}=-3^3-3.\left(-3\right)=-18\)

\(x^4+\frac{1}{x^4}=\left(x^2+\frac{1}{x^2}\right)^2-2=\left[\left(x+\frac{1}{x}\right)^2-2\right]^2-2=47\)

\(\left(x^4+\frac{1}{x^4}\right)\left(x^3+\frac{1}{x^3}\right)=x^7+\frac{1}{x^7}+x+\frac{1}{x}\)

\(\Leftrightarrow x^7+\frac{1}{x^7}=\left(x^4+\frac{1}{x^4}\right)\left(x^3+\frac{1}{x^3}\right)-\left(x+\frac{1}{x}\right)=-18.47-\left(-3\right)=-843\)

27 tháng 12 2015

tích đi mình làm cho

t

25 tháng 1 2016

a,(x+5)(3x-2)

b,(x^2-3x+1)(x^2+3x+1)

5 tháng 11 2016

Đặt \(\frac{b^2+c^2-a^2}{2bc}=A,\frac{c^2+a^2-b^2}{2ac}=B;\frac{a^2+b^2-c^2}{2ab}=C.\)

Theo giả thiết : \(A+B+C=1\)

Suy ra \(S=\left(A-1\right)+\left(B-1\right)+\left(C+1\right)=0\)

\(A-1=\frac{\left(b-c-a\right)\left(b-c+a\right)}{2bc};\)

\(B-1=\frac{\left(a-c-b\right)\left(a-c+b\right)}{2ac};\)

\(C+1=\frac{\left(a+b+c\right)\left(a+b-c\right)}{2ab}\)

\(S=\frac{a+b-c}{2abc}\left[c\left(a+b+c\right)+b\left(a-c-b\right)+a\left(b-c-a\right)\right]\)

\(S=0\Rightarrow\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)=0\)

Có 3 khả năng xảy ra :

TH1 : \(a+b-c=0\Rightarrow A-1=B-1=C+1=0\left(đpcm\right)\)

TH2 :

\(b+c-a=0\).Ta xét : \(A+1=B-1=C-1=0\left(đpcm\right)\)

TH3:

\(c+a-b=0\). Ta xét : \(S=\left(A-1\right)+\left(B+1\right)+\left(C-1\right)=0\)

\(\Rightarrow A-1=B+1=C-1=0\left(đpcm\right)\)