Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(xy+y^2-x-y\)
\(=\left(xy+y^2\right)-\left(x+y\right)\)
\(=y\left(x+y\right)-\left(x+y\right)\)
\(=\left(y-1\right)\left(x+y\right)\)
a) xy +y2 - x-y
y(x+y) -(x+y)
(x+y)(y-1)
c) x2 - 4x +3
x2 -3x - x - 3
x(x-3) -(x-3)
(x-3)(x-1)
câu 2
| |||||||||||||||||||||
ĐỂ phép chia hết thì m+12 = 0 => m = -12
có thể đúng cũng có thể sai ,có j sai hoặc ko đúng ib mk nhé
a: \(3x^2-6xy+8x-16y\)
\(=\left(3x^2-6xy\right)+\left(8x-16y\right)\)
\(=3x\left(x-2y\right)+8\left(x-2y\right)\)
\(=\left(x-2y\right)\left(3x+8\right)\)
h: \(9y^2-4x^2+4x-1\)
\(=9y^2-\left(4x^2-4x+1\right)\)
\(=\left(3y\right)^2-\left(2x-1\right)^2\)
\(=\left(3y-2x+1\right)\left(3y+2x-1\right)\)
\(x^2-y^2+5x-5y\)
\(=\left(x-y\right)\left(x+y\right)+5\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y+5\right)\)
\(---\)
\(x^2-16y^2+4x+4\)
\(=\left(x^2+4x+4\right)-16y^2\)
\(=\left(x+2\right)^2-\left(4y\right)^2\)
\(=\left(x+2-4y\right)\left(x+2+4y\right)\)
\(=\left(x-4y+2\right)\left(x+4y+2\right)\)
\(---\)
\(3x^2+6xy+3y^2-12\)
\(=3\left(x^2+2xy+y^2-4\right)\)
\(=3\left[\left(x+y\right)^2-2^2\right]\)
\(=3\left(x+y-2\right)\left(x+y+2\right)\)
\(---\)
\(4x^3+4x^2+x\)
\(=x\left(4x^2+4x+1\right)\)
\(=x\left(2x+1\right)^2\)
\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
\(x^3+4x^2+4x-16y^2\)
\(=\left(x^3+2x^2\right)+\left(2x^2+4x\right)-16y^2\)
\(=x^2.\left(x+2\right)+2x.\left(x+2\right)-16y^2\)
\(=\left(x+2\right).\left(x^2+2x\right)-16y^2\)
\(=x.\left(x+2\right).\left(x+2\right)-\left(4y\right)^2\)
\(=x.\left(x+2\right)^2-\left(4y\right)^2\)
\(=\left[\sqrt{x}.\left(x+2\right)\right]^2-4y^2\)
\(=\left[\sqrt{x}.\left(x+2\right)-4y\right].\left[\sqrt{x}.\left(x+2\right)+4y\right]\)
Tham khảo nhé~
nếu đưa vô căn phải có điều kiện là x > 0
\(x^3+4x^2+4x-16y^2=x\left(x+2\right)^2-\left(4y\right)^2\)
\(=\left(x\sqrt{x}+2\sqrt{x}\right)^2-\left(4y\right)^2=\left(x\sqrt{x}+2\sqrt{x}-4y\right)\left(x\sqrt{x}+2\sqrt{x}+4y\right)\)
16y2 - 4x2 - 12x - 9 = 16y2 - (4x2 + 12x + 9) = 16y2 - (2x + 3)2 = (4y - 2x - 3)(4y + 2x + 3)
\(16y^2-4x^2-12x-9=16y^2-\left(2x-3\right)^2\)
\(=\left(4y-2x+3\right)\left(4y+2x-3\right)\)
\(a,=x\left(y-3\right)+y\left(y-3\right)=\left(x+y\right)\left(y-3\right)\\ b,=\left(x+2\right)^2-16y^2=\left(x+4y+2\right)\left(x-4y+2\right)\)
\(a,xy-3x+y^2-3y=\left(xy-3x\right)+\left(y^2-3y\right)=x\left(y-3\right)+y\left(y-3\right)=\left(x+y\right)\left(y-3\right)\\ b,x^2-16y^2+4x+4=\left(x^2+4x+4\right)-16y^2=\left(x+2\right)^2-\left(4y\right)^2=\left(x-4y+2\right)\left(x+4y+2\right)\)