Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a+b\right)\left(a^2-b^2\right)+\left(b+c\right)\left(b^2-c^2\right)+\left(c+a\right)\left(c^2-a^2\right)\)
\(=a^3-ab^2+a^2b-b^3+b^3-bc^2+b^2c-c^3+c^3-a^2c+ac^2-a^3\)
\(=-ab^2+a^2b-bc^2+b^2c-a^2c+ac^2\)
\(=\left(a^2b-ab^2\right)+\left(ac^2-bc^2\right)-\left(a^2c-b^2c\right)\)
\(=ab\left(a-b\right)+c^2\left(a-b\right)-c\left(a-b\right)\left(a+b\right)\)
\(=\left(a-b\right)\left(ab+c^2-ac-bc\right)\)
\(=\left(a-b\right)\left[\left(ab-ac\right)+\left(c^2-bc\right)\right]\)
\(=\left(a-b\right)\left[a\left(b-c\right)+c\left(c-b\right)\right]\)
\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)
\(a\left(b^2-c^2\right)+b\left(c^2-a^2\right)+c\left(a^2-b^2\right)=\left(c-a\right)\left(c-b\right)\left(b-a\right)\)
1.
\(y^2+y\left(x^3+x^2+x\right)+x^5-x^4+2x^3-2x^2\)
\(\Delta=\left(x^3+x^2+x\right)^2-4\left(x^5-x^4+2x^3-2x^2\right)\)
\(=\left(x^3-x^2+3x\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}y=\dfrac{-x^3-x^2-x+x^3-x^2+3x}{2}=-x^2+x\\y=\dfrac{-x^3-x^2-x-x^3+x^2-3x}{2}=-x^3-2x\end{matrix}\right.\)
Hay đa thức trên có thể phân tích thành:
\(\left(x^2-x+y\right)\left(x^3+2x+y\right)\)
Dựa vào đó em tự tách cho phù hợp
\(a^2b^2\left(a-b\right)+b^2c^2\left(b-c\right)+c^2a^2\left(c-a\right)\)
\(=a^2b^2\left(a-b\right)-b^2c^2\left[\left(a-b\right)+\left(c-a\right)\right]+c^2a^2\left(c-a\right)\)
\(=a^2b^2\left(a-b\right)-b^2c^2\left(a-b\right)+c^2a^2\left(c-a\right)-b^2c^2\left(c-a\right)\)
\(=\left(a-b\right)b^2\left(a-c\right)\left(a+c\right)+\left(c-a\right)c^2\left(a-b\right)\left(a+b\right)\)
\(=\left(a-b\right)\left(a-c\right)\left(ab^2+cb^2-c^2a-c^2b\right)\)
\(=\left(a-b\right)\left(a-c\right)\left(b-c\right)\left(ab+ac+bc\right)\)
#)Giải :
a)\(ab\left(b-a\right)+bc\left(b-c\right)+ca\left(c-a\right)\)
\(=a\left(a-b\right)+b^2c-bc^2+ac^2-a^2c\)
\(=ab\left(a-b\right)-\left(a-b\right)\left(a+b\right)c+c^2\left(a-b\right)\)
\(=\left(ab-ac-bc+c^2\right)\left(a-b\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)
b) \(a^2\left(b-c\right)-b^2\left(c-a\right)+c^2\left(a-b\right)\)
\(=a^2\left(b-c\right)-b^2\left[\left(b-c\right)+\left(a-b\right)\right]+c^2\left(a-b\right)\)
\(=a^2\left(b-c\right)-b^2\left(b-c\right)-b^2\left(a-b\right)+c^2\left(a-b\right)\)
\(=\left(a^2-b^2\right)\left(b-c\right)-\left(b^2-c^2\right)\left(a-b\right)\)
\(=\left(a-b\right)\left(a+b\right)\left(b-c\right)-\left(b-c\right)\left(b+c\right)\left(a-b\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)
a: \(\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=\left[\left(a+b+c\right)^3-a^3\right]-\left(b^3+c^3\right)\)
\(=\left(a+b+c-a\right)\left[\left(a+b+c\right)^2+a\left(a+b+c\right)+a^2\right]-\left(b+c\right)\left(b^2-bc+c^2\right)\)
\(=\left(b+c\right)\left[a^2+b^2+c^2+a^2+a^2+2ab+2bc+2ac+ab+ac-b^2+bc-c^2\right]\)
\(=\left(b+c\right)\left(3a^2+3ab+3bc+3ac\right)\)
\(=3\left(b+c\right)\left(a+b\right)\left(a+c\right)\)
b: \(=\left(2x+2y+2z\right)^3-\left(x+y\right)^3-\left[\left(y+z\right)^3+\left(x+z\right)^3\right]\)
\(=\left(x+y+2z\right)\left[\left(2x+2y+2z\right)^2+2\left(x+y+z\right)\left(x+y\right)+\left(x+y\right)^2\right]-\left(x+y+2z\right)\left[\left(y+z\right)^2-\left(y+z\right)\left(x+z\right)+\left(x+z\right)^2\right]\)
\(=3\left(x+y+2z\right)\left(x+z+2y\right)\left(y+z+2x\right)\)
2) Ta có: Áp dụng bất đẳng thức:
\(xy\le\frac{\left(x+y\right)^2}{4}\) ta được:
\(\left(a+b-c\right)\left(b+c-a\right)\le\frac{\left(a+b-c+b+c-a\right)^2}{4}=\frac{4b^2}{4}=b^2\)
Tương tự chứng minh được:
\(\left(b+c-a\right)\left(a+c-b\right)\le c^2\)
\(\left(a+b-c\right)\left(a+c-b\right)\le a^2\)
Nhân vế 3 bất đẳng thức trên với nhau ta được:
\(\left[\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\right]^2\le\left(abc\right)^2\)
\(\Rightarrow\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\le abc\)
Dấu "=" xảy ra khi: \(a=b=c\)