K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2016

→(a+b)(a2-b2) +(b+c)(b2-a2) -(c2-a2)(b+c) +(c+a)(c2-a2)

(a2-b2)(a+b-b-c)-(c2-a2)(b+c-c-a)

↔(a-c)(a2-b2)-(c2-a2)(b-a)

↔(a-c)((a2-b2-(a+c)(b-a))

↔(a-c)(a-b)(a+b+b-a)

↔2b(a-c)(a-b)

7 tháng 8 2016

\(\left(a+b\right)\left(a^2-b^2\right)+\left(b+c\right)\left(b^2-c^2\right)+\left(c+a\right)\left(c^2-a^2\right)\)

\(=a^3-ab^2+a^2b-b^3+b^3-bc^2+b^2c-c^3+c^3-a^2c+ac^2-a^3\)

\(=-ab^2+a^2b-bc^2+b^2c-a^2c+ac^2\)

\(=\left(a^2b-ab^2\right)+\left(ac^2-bc^2\right)-\left(a^2c-b^2c\right)\)

\(=ab\left(a-b\right)+c^2\left(a-b\right)-c\left(a-b\right)\left(a+b\right)\)

\(=\left(a-b\right)\left(ab+c^2-ac-bc\right)\)

\(=\left(a-b\right)\left[\left(ab-ac\right)+\left(c^2-bc\right)\right]\)

\(=\left(a-b\right)\left[a\left(b-c\right)+c\left(c-b\right)\right]\)

\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)

7 tháng 8 2016

chỗ cuối phải là c^2-a^2 nha mọi người

 

1 tháng 7 2017

\(a\left(b^2-c^2\right)+b\left(c^2-a^2\right)+c\left(a^2-b^2\right)=\left(c-a\right)\left(c-b\right)\left(b-a\right)\)

24 tháng 1 2022

k làm đc k cần phải ghi zậy mô ha

NV
24 tháng 1 2022

1.

\(y^2+y\left(x^3+x^2+x\right)+x^5-x^4+2x^3-2x^2\)

\(\Delta=\left(x^3+x^2+x\right)^2-4\left(x^5-x^4+2x^3-2x^2\right)\)

\(=\left(x^3-x^2+3x\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}y=\dfrac{-x^3-x^2-x+x^3-x^2+3x}{2}=-x^2+x\\y=\dfrac{-x^3-x^2-x-x^3+x^2-3x}{2}=-x^3-2x\end{matrix}\right.\)

Hay đa thức trên có thể phân tích thành:

\(\left(x^2-x+y\right)\left(x^3+2x+y\right)\)

Dựa vào đó em tự tách cho phù hợp

18 tháng 8 2019

\(a^2b^2\left(a-b\right)+b^2c^2\left(b-c\right)+c^2a^2\left(c-a\right)\)

\(=a^2b^2\left(a-b\right)-b^2c^2\left[\left(a-b\right)+\left(c-a\right)\right]+c^2a^2\left(c-a\right)\)

\(=a^2b^2\left(a-b\right)-b^2c^2\left(a-b\right)+c^2a^2\left(c-a\right)-b^2c^2\left(c-a\right)\)

\(=\left(a-b\right)b^2\left(a-c\right)\left(a+c\right)+\left(c-a\right)c^2\left(a-b\right)\left(a+b\right)\)

\(=\left(a-b\right)\left(a-c\right)\left(ab^2+cb^2-c^2a-c^2b\right)\)

\(=\left(a-b\right)\left(a-c\right)\left(b-c\right)\left(ab+ac+bc\right)\)

20 tháng 8 2019

t làm bên h rồi mà? Làm quá lâu rồi luôn ấy! Đáp án y chang bạn Kid:v

Câu hỏi của Trần Minh Hiển - Toán lớp 9 (không biết AD đã fix lỗi ko dán link h vào olm chưa, nếu chưa ib t gửi full link, nhớ kèm theo link câu hỏi này là ok.)

31 tháng 7 2019

#)Giải :

a)\(ab\left(b-a\right)+bc\left(b-c\right)+ca\left(c-a\right)\)

\(=a\left(a-b\right)+b^2c-bc^2+ac^2-a^2c\)

\(=ab\left(a-b\right)-\left(a-b\right)\left(a+b\right)c+c^2\left(a-b\right)\)

\(=\left(ab-ac-bc+c^2\right)\left(a-b\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)

b) \(a^2\left(b-c\right)-b^2\left(c-a\right)+c^2\left(a-b\right)\)

\(=a^2\left(b-c\right)-b^2\left[\left(b-c\right)+\left(a-b\right)\right]+c^2\left(a-b\right)\)

\(=a^2\left(b-c\right)-b^2\left(b-c\right)-b^2\left(a-b\right)+c^2\left(a-b\right)\)

\(=\left(a^2-b^2\right)\left(b-c\right)-\left(b^2-c^2\right)\left(a-b\right)\)

\(=\left(a-b\right)\left(a+b\right)\left(b-c\right)-\left(b-c\right)\left(b+c\right)\left(a-b\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)

a: \(\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=\left[\left(a+b+c\right)^3-a^3\right]-\left(b^3+c^3\right)\)

\(=\left(a+b+c-a\right)\left[\left(a+b+c\right)^2+a\left(a+b+c\right)+a^2\right]-\left(b+c\right)\left(b^2-bc+c^2\right)\)

\(=\left(b+c\right)\left[a^2+b^2+c^2+a^2+a^2+2ab+2bc+2ac+ab+ac-b^2+bc-c^2\right]\)

\(=\left(b+c\right)\left(3a^2+3ab+3bc+3ac\right)\)

\(=3\left(b+c\right)\left(a+b\right)\left(a+c\right)\)

b: \(=\left(2x+2y+2z\right)^3-\left(x+y\right)^3-\left[\left(y+z\right)^3+\left(x+z\right)^3\right]\)

\(=\left(x+y+2z\right)\left[\left(2x+2y+2z\right)^2+2\left(x+y+z\right)\left(x+y\right)+\left(x+y\right)^2\right]-\left(x+y+2z\right)\left[\left(y+z\right)^2-\left(y+z\right)\left(x+z\right)+\left(x+z\right)^2\right]\)

\(=3\left(x+y+2z\right)\left(x+z+2y\right)\left(y+z+2x\right)\)

20 tháng 11 2021

Đúng hết mà?

4 tháng 8 2020

2) Ta có: Áp dụng bất đẳng thức:

\(xy\le\frac{\left(x+y\right)^2}{4}\) ta được:

\(\left(a+b-c\right)\left(b+c-a\right)\le\frac{\left(a+b-c+b+c-a\right)^2}{4}=\frac{4b^2}{4}=b^2\)

Tương tự chứng minh được:

\(\left(b+c-a\right)\left(a+c-b\right)\le c^2\)

\(\left(a+b-c\right)\left(a+c-b\right)\le a^2\)

Nhân vế 3 bất đẳng thức trên với nhau ta được:

\(\left[\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\right]^2\le\left(abc\right)^2\)

\(\Rightarrow\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\le abc\)

Dấu "=" xảy ra khi: \(a=b=c\)