Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^3y^3+x^2y^2+4\)
\(=x^3y^3-x^2y^2+2x^2y^2-2xy+2xy+4\)
\(=\left(x^3y^3-x^2y^2+2xy\right)+\left(2x^2y^2-2xy+4\right)\)
\(=xy\left(x^2y^2-xy+2\right)+2\left(x^2y^2-xy+2\right)\)
\(=\left(xy+2\right)\left(x^2y^2-xy+2\right)\)
b) \(x^3+3x^2y-9xy^2+5y^3\)
\(=x^3+5x^2y-2x^2y-10xy^2+xy^2+5y^3\)
\(=\left(5y^3-10xy^2+5x^2y\right)+\left(xy^2-2x^2y+x^3\right)\)
\(=5y\left(y^2-2xy+x^2\right)+x\left(y^2-2xy+x^2\right)\)
\(=\left(5y+x\right)\left(y^2-2xy+x^2\right)\)
\(=\left(5y+x\right)\left(y-x\right)^2\)
mk viết đáp án, ko biết biến đổi ib mk
a) \(x^3+3x^2y-9xy^2+5y^3=\left(x+5y\right)\left(x-y\right)^2\)
b) \(x^4+x^3+6x^2+5x+5=\left(x^2+5\right)\left(x^2+x+1\right)\)
c) \(x^4-2x^3-12x^2+12x+36=\left(x^2-6\right)\left(x^2-2x-6\right)\)
d) \(x^8y^8+x^4y^4+1=\left(x^2y^2-xy+1\right)\left(x^2y^2+xy+1\right)\left(x^4y^4-x^2y^2+1\right)\)
Phân tích các đa thức sau thành nhân tử ... c) 6x(x+y)^2+3x^2y(x+y). 2: .... x3 - 5x + 8x - 4=x2 . x -5x + 8x -22 = (x2 - 22) . (x -5x + 8x )=(x-2) . (x+2) . 4x. x3 - 9x2 ..... Phân tích các đa thức sau thành nhân tử : a,x^3+5x^2+8x+4 b, x^3-9x^2+6x+16 .
a, x3+x+2
=x3-x2+2x+x2-x+2
=x(x2-x+2)+(x2-x+2)
=(x+1)(x2-x+2)
b, x3-2x-1
=x3-x2-x+x2-x-1
=x(x2-x-1)+(x2-x-1)
=(x+1)(x2-x-1)
c, x3+3x2-4
=x2(x+3)-4
=(x-1)(x+2)2
d, x3+3x2y-9xy2+5y3
=(x3-3x2y+3xy2-y3)+(6y3-12xy2+6x2y)
=(x-y)3+6y(x-y)2
=(x-y)2(x+5y)
a) \(A=\left(x+2\right)\left(x+3\right)\left(x+5\right)\left(x+6\right)-10\)
\(=\left(x^2+8x+12\right)\left(x^2+8x+15\right)-10\)
Đặt \(x^2+8x+12=t\)
Khi đó ta có:
\(A=t\left(t+3\right)-10\)
\(=t^2+3t-10\)
\(=\left(t-2\right)\left(t+5\right)\)
Thay trở lại ta có:
\(A=\left(x^2+8x+10\right)\left(x^2+8x+17\right)\)
b) \(B=x\left(2x+1\right)\left(2x+3\right)\left(4x+8\right)-18\)
\(=\left(4x^2+8x\right)\left(4x^2+8x+3\right)-18\)
Đặt \(4x^2+8x=t\)
Khi đó ta có:
\(B=t\left(t+3\right)-18=t^2+3t-18=\left(t-3\right)\left(t+6\right)\)
Thay trở lại ta có:
\(B=\left(4x^2+8x-3\right)\left(4x^2+8x+6\right)=2\left(4x^2+8x-3\right)\left(2x^2+4x+3\right)\)
a, Đặt A=...=(x+2)(x+6)(x+3)(x+5)-10=(x2+8x+12)(x2+8x+15)-10
Đặt x2+8x+12=y
=>A=y(y+3)-10=y2+3y-10=y2-2y+5y-10=y(y-2)+5(y-2)=(y-2)(y+5)=(x2+8x+12-2)(x2+8x+12+5)=(x2+8x+10)(x2+8x+17)
b, Đặt B=...=x(4x+8)(2x+1)(2x+3)-18=(4x2+8x)(4x2+8x+3)-18
Đặt 4x2+8x=t
=>B=t(t+3)-18=t2+3t-18=t2-3t+6t-18=t(t-3)+6(t-3)=(t-3)(t+6)=(4x2+8x-3)(4x2+8x+6)