Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`16x^2z^2+y^2-z^2-16x^2y^2`
`=16x^2(z^2-y^2)+(y^2-z^2)`
`=16x^2(z-y)(y+z)+(y-z)(y+z)`
`=(y+z)[16x^2(z-y)+y-z]`
`=(y+z)(16x^2z-16x^2y+y-z)`
\(4\left(x^2y^2+z^2t^2+2xyzt\right)-\left(x^2+y^2-z^2-t^2\right)^2\)
\(=\left(2xy-2tz\right)^2-\left(x^2+y^2-z^2-t^2\right)\)
\(=\left(2xy-2tz-x^2-y^2+z^2+t^2\right)\left(2xy-2tz+x^2+y^2-z^2-t^2\right)\)
\(=\left[-\left(x-y\right)^2+\left(z-t\right)^2\right]\left[\left(x+y\right)^2-\left(t+z\right)^2\right]\)
\(=-\left(x-y-z+t\right)\left(x-y+z-t\right)\left(x+y-t-z\right)\left(x+y+t+z\right)\)
4(x2y2+z2t2+2xyzt)−(x2+y2−z2−t2)24(x2y2+z2t2+2xyzt)−(x2+y2−z2−t2)2
=[2(xy+zt)]2−(x2+y2−z2−t2)2=[2(xy+zt)]2−(x2+y2−z2−t2)2
=(2xy+2zt)2−(x2+y2−z2−t2)2=(2xy+2zt)2−(x2+y2−z2−t2)2
=(2xy+2zt−x2−y2+z2+t2)(2xy+2zt+x2+y2−z2−t2)2
\(x^5-x^4-30x^3=x^3\left(x^2-x-30\right)=x^3\left(x-6\right)\left(x+5\right)\)
x2-2xy+y2+3x-3y-10
= (x-y)2+3(x-y)-10
= [(x-y)2+5(x-y)]-[2(x-y)+10]
= (x-y)(x-y+5)-2(x-y+5)
= (x-y+5)(x-y-2)
Ta có: \(x^2-2xy+y^2+3x-3y-10\)
\(=\left(x-y\right)^2+3\left(x-y\right)-10\)
\(=\left(x-y+5\right)\left(x-y-2\right)\)
\(=4ab\left(ab+ax+bx+x^2\right)=4a^2b^2+4a^2bx+4ab^2x+4abx^2\)
\(\left(ab-1\right)^2+\left(a+b\right)^2=a^2b^2-2ab+1+a^2+2ab+b^2=a^2+b^2+a^2b^2+1=a^2\left(b^2+1\right)+\left(b^2+1\right)=\left(a^2+1\right)\left(b^2+1\right)\)
\(x^2-xy\left(a+b\right)+aby^2=x^2-xya-xyb+aby^2=x\left(x-ya\right)-yb\left(x-ya\right)=\left(x-ya\right)\left(x-yb\right)\)
\(x^2-xy\left(a+b\right)+aby^2\)
\(=x^2-axy-bxy+aby^2\)
\(=x\left(x-ay\right)-by\left(x-ay\right)\)
\(=\left(x-ay\right)\left(x-by\right)\)
\(abc-\left(ab+bc+ac\right)+\left(a+b+c\right)-1=\left(abc-ab\right)-\left(bc-b\right)-\left(ac-a\right)+\left(c-1\right)=ab\left(c-1\right)-b\left(c-1\right)-a\left(c-1\right)+\left(c-1\right)=\left(c-1\right)\left(ab-b-a+1\right)=\left(c-1\right)\left[b\left(a-1\right)-\left(a-1\right)\right]=\left(a-1\right)\left(b-1\right)\left(c-1\right)\)
(a+b)3+(a-b)3=(a3+3a2b+3ab2+b3)+(a3-3a2b+3ab2-b3)
=a6+6a2b4
a: Ta có: \(a^5-ax^4+a^4x-x^5\)
\(=a\left(a^4-x^4\right)+x\left(a^4-x^4\right)\)
\(=\left(a-x\right)\left(a+x\right)\left(a^2+x^2\right)\cdot\left(a+x\right)\)
\(=\left(a-x\right)\cdot\left(a+x\right)^2\cdot\left(a^2+x^2\right)\)