Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phân tích đa thức thành nhân tử
a. 3ab ( x+ y) - 6ab ( y+ x)
=( x + y) ( 3ab - 6ab )
= ( x +y ) ( - 3ab)
b.7a (x - 3)+a2(x2 - 9)
=7a( x- 3) + a2 ( x2 - 32)
=7a ( x - 3 ) + a2 ( x- 3 ) ( x+3 )
= ( x- 3) . 7a + a2 ( x + 3)
= ( x- 3) ( 7a +a2x + 3a2)
c. 34 (x + y) -x -y
= 34 ( x+ y) - ( x+y)
=(x +y ) ( 34 - 1) = 33 ( x+ y)
d. 25 x4 - 942
=( 5x2 )2 - 942
=( 5x2 - 94 ) ( 5x2+94)
e.( 5a - b )2 - ( 2a +3b)2
=( 5a -b -2a - 3b) (5a -b + 2a + 3b)
=(3a - 4b) (7a+ 2b)
k. 22 -3a - b2 +3b
=( 22 - b2 ) + ( -3a +3b)
=( 2-b) (2+b) + 3( -a +b)
\(x^3-x^2-5x+125\)
\(=\left(x+5\right)\left(x^2-5x+25\right)-x\left(x+5\right)\)
\(=\left(x+5\right)\left(x^2-5x+25-x\right)\)
\(=\left(x+5\right)\left(x^2-6x+25\right)\)
\(x^6-x^4-9x^3+9x^2\)
\(=x^4\left(x^2-1\right)-9x^2\left(x-1\right)\)
\(=x^4\left(x-1\right)\left(x+1\right)-9x^2\left(x-1\right)\)
\(=x^2\left(x-1\right)\left[x^2\left(x+1\right)-9\right]\)
\(=x^2\left(x-1\right)\left(x^3+x^2-9\right)\)
\(x^4-4x^3+8x^2-16x+16\)
\(=\left(x^2+4\right)^2-4x\left(x^2+4\right)\)
\(=\left(x^2+4\right)\left(x^2+4-4x\right)\)
\(=\left(x^2+4\right)\left(x-2\right)^2\)
\(3a^2-6ab+3b^2-12c^2\)
\(=3\left(a^2-2ab+b^2-4c^2\right)\)
\(=3\left[\left(a-b\right)^2-\left(2c\right)^2\right]\)
\(=3\left(a-b+2c\right)\left(a-b-2c\right)\)
a)\(81x^2-6yz-9y^2-z^2\)
\(=81x^2-\left(z-3y\right)^2\)
\(=\left(9x-z+3y\right)\left(9x+z-3y\right)\)
b)\(x^2y-x^3-9y+9x\)
\(=x^2\left(y-x\right)-9\left(y-x\right)\)
\(=\left(y-x\right)\left(x-3\right)\left(x+3\right)\)
c)\(3a^2-6ab+3b^2-12c^2\)
\(=3\left(a^2-2ab+b^2-4z^2\right)\)
\(=3\left[\left(a-b\right)^2-4z^2\right]\)
\(=3\left(a-b-2z\right)\left(a-b+2z\right)\)
a)\(81x^2-6yz-9y^2-z^2=\left(9x\right)^2-\left(9y^2+6yz+z^2\right)=\left(9x\right)^2-\left(3y+z\right)^2=\left(9x-3y-z\right)\left(9x+3y+z\right)\)b)\(x^2y-x^3-9y+9x=x^2\left(y-x\right)-9\left(y-x\right)=\left(x^2-9\right)\left(y-x\right)=\left(x-3\right)\left(x+3\right)\left(y-x\right)\)
c)\(3a^2-6ab+3b^2-12c^2=3\left(a^2-2ab+b^2-4c^2\right)=3\left[\left(a-b\right)^2-\left(2c\right)^2\right]=3\left(a-b-2c\right)\left(a-b+2c\right)\)
\(5a^2+10b^2-6ab-4a+2b+3\)
\(=\left(a^2-6ab+9b^2\right)+\left(4a^2-4a+1\right)+\left(b^2+2b+1\right)+1\)
\(=\left(a-3b\right)^2+\left(2a-1\right)^2+\left(b+1\right)^2+1>0\left(đpcm\right)\)
bn chép lại đề nhé
a/ \(=\left(x+y\right)^2-4x^2y^2=\left(x+y+2xy\right)\left(x+y-2xy\right)\)
b/ \(=\left(2bc+b^2+c^2-a^2\right)\left(2bc-b^2-c^2+a^2\right)\)
\(=\left[\left(b+c\right)^2-a^2\right]\left[-\left(b+c\right)^2+a^2\right]\)
\(=\left(b+c-a\right)\left(b+c+a\right)^2\left(a-b-c\right)\)
c/ \(=2a^2+2b^2-2c^2+4ab=2\left[\left(a^2+b^2+2ab\right)-c^2\right]\)
\(=2\left(a+b-c\right)\left(a+b+c\right)\)
d/ \(=\left(4x^2-25\right)^2-9\left(4x^2-20x+25\right)\)
\(=\left(4x^2-25\right)^2-9\left(4x^2+25\right)+180x\)
tới đây bạn đặt a= 4x^2 -25 rồi làm típ nha, mình lười quá ><
e/ tương tự câu d nha bạn
f/ \(=a^4\left(a^2-1\right)+2a^2\left(a+1\right)\)
\(=a^4\left(a-1\right)\left(a+1\right)+2a^2\left(a+1\right)\)
\(=a^2\left(a+1\right)\left(a^2+2\right)\)
g/ đặt \(a=3x^2+3x+2\) khi đó biểu thức trở thành
\(a^2-\left(a+4\right)^2=a^2-a^2-8a-16\)
\(=-8a-16=-8\left(3x^2+3x+2-8\right)=-8\left(3x^2+3x-6\right)\)
\(=-24\left(x^2+x-2\right)=-24\left(x-1\right)\left(x+2\right)\)
xong rùi nha bn. Chúc bn hc tốt (xin lỗi tại có mấy câu mình lười nha)
\(x^2-4x^2y^2+y^2+2xy\)
\(=\left(x^2+2xy+y^2\right)-4x^2y^2\)
\(=\left(x+y\right)^2-4x^2y^2\)
\(=\left(x-2xy+y\right)\left(x+2xy+y\right)\)
a: Sửa đề: \(a^2\left(a+1\right)+b^2\left(b-1\right)-a^2b^2\left(a+b\right)\)
\(=a^3+a^2+b^3-b^2-a^2b^2\left(a+b\right)\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a-b\right)\left(a+b\right)-a^2b^2\left(a+b\right)\)
\(=\left(a+b\right)\left(a^2-ab+b^2+a-b-a^2b^2\right)\)
b: \(=a^m\cdot a^3+2\cdot a^m\cdot a^2+a^m\)
\(=a^m\left(a^3+2a^2+1\right)\)
Phương pháp chung để PTĐTTNT dạng \(a^2+m.ab+n.b^2\) với \(m,n\) là hằng số.
Nháp: Bạn kiểm tra xem \(m^2-4n\) có âm hay không. Nếu nó âm thì đa thức không thể phân tích thành nhân tử. Nếu không âm thì bạn tìm 2 số \(k,l\) thỏa mãn \(\left\{{}\begin{matrix}k+l=m\\kl=n\end{matrix}\right.\). Khi tìm được \(k,l\) rồi, ta ghi vào bài làm:
\(a^2+m.ab+n.b^2=a^2+k.ab+l.ab+kl.b^2\) \(=a\left(a+kb\right)+lb\left(a+kb\right)=\left(a+kb\right)\left(a+lb\right)\)
Mẫu: \(a^2-6ab+8b^2\), kiểm tra thấy \(\left(-6\right)^2-4.8=4>0\) (thỏa mãn). Vậy ta sẽ tìm 2 số \(k,l\) thỏa mãn \(\left\{{}\begin{matrix}k+l=-6\\kl=8\end{matrix}\right.\). Dễ dàng nhẩm được \(\left\{{}\begin{matrix}k=-2\\l=-4\end{matrix}\right.\). Do đó ta viết vào bài làm như sau:
\(a^2-6ab+8b^2=a^2-2ab-4ab+8b^2\) \(=a\left(a-2b\right)-4b\left(a-2b\right)=\left(a-2b\right)\left(a-4b\right)\)
Chúc bạn thành công!