K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2023

a: \(70a+84b-20ab-24b^2\)

\(=\left(70a+84b\right)-\left(20ab+24b^2\right)\)

\(=14\left(5a+6b\right)-4b\left(5a+6b\right)\)

\(=\left(5a+6b\right)\left(14-4b\right)\)

\(=2\left(7-2b\right)\left(5a+6b\right)\)

b: \(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+3xyz\)

\(=\left(x^2y+x^2z\right)+\left(xy^2+xz^2\right)+\left(y^2z+yz^2\right)+3xyz\)

\(=x^2\left(y+z\right)+x\left(y^2+z^2\right)+yz\left(y+z\right)+3xyz\)

\(=x^2\left(y+z\right)+x\left(y^2+z^2\right)+yz\left(y+z\right)+2xyz+xyz\)

\(=x^2\left(y+z\right)+x\left(y^2+z^2+2yz\right)+yz\left(y+z+x\right)\)

\(=x^2\left(y+z\right)+x\left(y+z\right)^2+yz\left(y+z+x\right)\)

\(=\left(y+z\right)\cdot x\left(x+y+z\right)+yz\left(y+z+x\right)\)

\(=\left(y+z+x\right)\cdot\left(xy+xz+yz\right)\)

c: \(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+2xyz\)

\(=\left(x^2y+x^2z\right)+\left(xy^2+xz^2+2xyz\right)+\left(y^2z+yz^2\right)\)

\(=x^2\left(y+z\right)+x\left(y^2+z^2+2xz\right)+yz\left(y+z\right)\)

\(=\left(y+z\right)\left(x^2+yz\right)+x\left(y+z\right)^2\)

\(=\left(y+z\right)\left(x^2+yz+xy+xz\right)\)

\(=\left(y+z\right)\left(x+z\right)\left(x+y\right)\)

NV
5 tháng 8 2021

a.

\(x^3-y^3+2x^2-2y^2\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)+\left(x-y\right)\left(2x+2y\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2+2x+2y\right)\)

b.

\(x^3+1-x^2-x\)

\(=\left(x+1\right)\left(x^2-x+1\right)-x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-2x+1\right)\)

\(=\left(x+1\right)\left(x-1\right)^2\)

26 tháng 10 2021

a(b3 - c3) + b(c- a3) + c(a- b3)

= a(b3 - c) + b( c3 - b3 + b3 - a3) + c(a3 - b3)

= a(b3 - c3) + b(c3 - b3) + b(b3 - a3) + c(a3 - b3)

\(=\left[a\left(b^3-c^3\right)-b\left(b^3-c^3\right)\right]-\left[b\left(a^3-b^3\right)-c\left(a^3-b^3\right)\right]\)

= (b3 - c3)(a - b) - (a3- b3)(b - c)

= (b - c)(b2 + bc + c2)(a - b) - (a - b)(a2 + ab + b2)(b - c)

= (b - c)(a - b)(b2 + bc + c2 - a2 + ab - b2)

= (b - c)(a - b) [ (c2  - a2) + (bc - ab) ]

= (b - c)(a - b) [ (c - a)(c + a) + b(c - a) ]

= (b - c)(a -b) [ (c - a)(c + a + b) ]

 

= (a- b)(b - c)(c - a)(a + b + c)

18 tháng 7 2021

a) \(x^2-2x-4y^2-4y=\left(x^2-4y^2\right)-\left(2x+4y\right)=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)=\left(x+2y\right)\left(x-2y-2\right)\)

b) \(x^3+2x^2+2x+1=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)=\left(x+1\right)\left(x^2-x+1+2x\right)=\left(x+1\right)\left(x^2+x+1\right)\)

c) \(x^3-4x^2+12x-27=x^3-3x^2-x^2+3x+9x-27=x^2\left(x-3\right)-x\left(x-3\right)+9\left(x-3\right)=\left(x-3\right)\left(x^2-x+9\right)\)

d) \(a^6-a^4+2a^3+2a^2=a^2\left(a^4-a^2+2a+2\right)=a^2\left[a^2\left(a-1\right)\left(a+1\right)+2\left(a+1\right)\right]=a^2\left(a+1\right)\left(a^3-a^2+2\right)=a^2\left(a+1\right)\left[a^3+a^2-2a^2+2\right]=a^2\left(a+1\right)\left[a^2\left(a+1\right)-2\left(a-1\right)\left(a+1\right)\right]=a^2\left(a+1\right)^2\left(a^2-2a+2\right)\)

a) Ta có: \(x^2-2x-4y^2-4y\)

\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)

\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y-2\right)\)

b) Ta có: \(x^3+2x^2+2x+1\)

\(=\left(x^3+1\right)+2x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+x+1\right)\)

9 tháng 7 2021

a) \(x^3-8x^2+x+42=x^3-7x^2-x^2+7x-6x+42\)

\(=x^2\left(x-7\right)-x\left(x-7\right)-6\left(x-7\right)=\left(x-7\right)\left(x^2-x-6\right)=\left(x-7\right)\left(x-3\right)\left(x-2\right)\)

 

 

5 tháng 8 2021

e) Ta có: \(x^4-2x^3+2x-1\)

\(=\left(x^4-1\right)-2x\left(x^2-1\right)\)

\(=\left(x^2+1\right)\left(x-1\right)\left(x+1\right)-2x\left(x-1\right)\left(x+1\right)\)

\(=\left(x-1\right)\left(x+1\right)\cdot\left(x^2-2x+1\right)\)

\(=\left(x+1\right)\cdot\left(x-1\right)^3\)

h) Ta có: \(3x^2-3y^2-2\left(x-y\right)^2\)

\(=3\left(x^2-y^2\right)-2\left(x-y\right)^2\)

\(=3\left(x-y\right)\left(x+y\right)-2\left(x-y\right)^2\)

\(=\left(x-y\right)\left(3x+3y-2x+2y\right)\)

\(=\left(x-y\right)\left(x+5y\right)\)

a) Ta có: \(x^2-y^2-2x-2y\)

\(=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-2\right)\)

b) Ta có: \(x^2\left(x+2y\right)-x-2y\)

\(=\left(x+2y\right)\left(x^2-1\right)\)

\(=\left(x+2y\right)\left(x-1\right)\left(x+1\right)\)