\(x^2-2xy+y^2+4x-4y-5\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2016

x2-2xy+y2+4x-4y-5 = (x2-2xy+y2)+(4x-4y)-5

                               = (x+y)2+4(x-y)-5

                               = 4(x-y)-5

 Làm đại, không chắc lắm!

27 tháng 12 2019

Cách 1: \(x^2-2xy+y^2+4x-4y-5=\left(y^2-xy+y\right)+\left(-xy+x^2-x\right)+\left(-5y+5x-5\right)\)

\(=y\left(y-x+1\right)-x\left(y-x+1\right)-5\left(y-x+1\right)=\left(y-x+1\right)\left(y-x-5\right)\)

Cách 2: \(x^2-2xy+y^2+4x-4y-5=\left(x^2+y^2+2^2-2xy+4x-4y\right)-9\)

\(=\left(y-x-2\right)^2-3^2=\left(y-x-2-3\right)\left(y-x-2+3\right)=\left(y-x-5\right)\left(y-x+1\right)\)

27 tháng 12 2019
X²-2xy+y²+4x-4y-5 =x²-xy-xy+y²+5x-x-5y+y-5 X.(x-y-1)-y.(x-y-1)+5(x-y-1) =(x-y-1).(x-y+5)
19 tháng 10 2016

\(x\left(x+2\right)\left(x+3\right)\left(x+5\right)+9\)

\(=\left(x^2+5x+6\right)\left(x^2+5x\right)+9\)

Đặt \(t=x^2+5x\)ta được;

\(t\left(t+6\right)+9=t^2+6t+9\)

\(=\left(t+3\right)^2=\left(x^2+5x+3\right)^2\)

b)\(x^2+2xy+y^2+2x+2y-15\)

\(=\left(x+y+1\right)^2-4^2\)

\(=\left(x+y+1+4\right)\left(x+y+1-4\right)\)

\(=\left(x+y-3\right)\left(x+y+5\right)\)

c)\(4x^4y^4+1=\left(2x^2y^2-2xy+1\right)\left(2x^2y^2+2xy+1\right)\)

\(1.\)

\(x^2-2x+1-xy-y=\left(x-1\right)^2-y\left(x-1\right)=\left(x-1\right)\left(x-1-y\right)\)

\(2.\)

\(x^3-4x^2+4x-2x+2=x\left(x^2-4x+4\right)-2\left(x-1\right)=x\left(x-2\right)^2-2\left(x-1\right)\)

\(3.\)

\(10x-25-x^2+4y^2=4y^2-\left(x^2-10x+25\right)=4y^2-\left(x-5\right)^2=\left(2y+x-5\right)\left(2y-x+5\right)\)

\(4.\)

\(4x^2-2x+2xy-y=2x\left(2x-1\right)+y\left(2x-1\right)=\left(2x-1\right)\left(2x+y\right)\)

\(5.\)

\(4x\left(x-3\right)^2-3x^2+9x=4x\left(x-3\right)^2-3x\left(x-3\right)=\left(x-3\right)\left(4x^2-12x-3x\right)\)

7 tháng 1 2018

\(x^2-2xy+y^2+4x-4y-5\)

\(=\left(x-y\right)^2+4\left(x-y\right)+4-9\)

\(=\left(x-y+2\right)^2-9\)

\(=\left(x-y+2+3\right)\left(x-y+2-3\right)\)

\(=\left(x-y+5\right)\left(x-y-1\right)\)

7 tháng 1 2018

a, = (x^2-2xy+y^2)+(4x-4y)-5

    = (x-y)^2+4.(x-y)-5

    = [(x-y)^2+4.(x-y)+4]-9

    = (x-y+2)^2-9

    = (x-y+2-3).(x-y+2+3)

    = (x-y-1).(x-y+5)

b, Xét : A = n^3+n+2 = (n^3+n)+2 = n.(n^2+1)+2

Nếu n chẵn => n.(n^2+1) chia hết cho 2 => A chia hết cho 2

Nếu n lẻ => n^2 lẻ => n^2+1 chẵn => n.(n^2+1) chia hết cho 2 => A chia hết cho 2

Vậy A chia hết cho 2 với mọi n thuộc N sao

Mà n thuộc N sao nên n.(n^2+1)+2 > 2

=> A là hợp số hay n^3+n+2 là hợp số

=> ĐPCM

Tk mk nha

19 tháng 10 2016

1, x2+3xy+2y2= x2+xy+2xy+2y2=x(x+y)+2y(x+y)=(x+2y)(x+y)

2, x(x+2)(x+3)(x+5)+9=x(x+5)(x+2)(x+3)+9=(x2+5x)(x2+5x+6)+9

Đặt x2+5x=t, ta có

t(t+6)+9=t2+6t+9=(t+3)2=(x2+5x+3)2=(x2+8)2

3, x2+2xy+y2+2x+2y-15=(x+y)2+2(x+y)-15=(x+y)2+2(x+y)+1-16=(x+y+1)2-42

= (x+y+1-4)(x+y+1+4)=(x+y-3)(x+y+5)

4, 4x4y4+1=4x4y4+4x2y2+1-4x2y2=(2x2y2+1)2-(2xy)2=(2x2y2+1-2xy)(2x2y2+1+2xy)

20 tháng 10 2016

câu 2,3 mk không hiểu lắm, nhưng dãu sao cũng cảm ơn bn

@phạm hương trà

2 tháng 9 2018

\(x^3+8y^3+2xy^2+x^2y\)

\(=x^3+2x^2y-x^2y-2xy^2+4xy^2+8y^3\)

\(=x^2\left(x+2y\right)-xy\left(x+2y\right)+4y^2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x^2-xy+4y^2\right)\)

30 tháng 9 2020

1. x2 - 16 - 4xy + 4y2

= ( x2 - 4xy + 4y2 ) - 16

= ( x - 2y )2 - 42

= ( x - 2y - 4 )( x - 2y + 4 )

2. 4x2 + 4x - 3

= ( 4x2 + 4x + 1 ) - 4

= ( 2x + 1 )2 - 2

= ( 2x + 1 - 2 )( 2x + 1 + 2 )

= ( 2x - 1 )( 2x + 3 )

3. x2 - x - 12

= x2 + 3x - 4x - 12

= x( x + 3 ) - 4( x + 3 )

= ( x + 3 )( x - 4 )

4. 3x + 3y - x2 - 2xy - y2

= ( 3x + 3y ) - ( x2 + 2xy + y2 )

= 3( x + y ) - ( x + y )2

= ( x + y )( 3 - x - y )

5. 4y4 + 16 

= 4( y4 + 4 )

= 4( y4 + 4y2 + 4 - 4y2 )

= 4[ ( y4 + 4y2 + 4 ) - 4y2 ]

= 4[ ( y2 + 2 )2 - ( 2y )2 ]

= 4( y2 - 2y + 2 )( y2 + 2y + 2 )

30 tháng 9 2020

a,\(x^2-16-4xy+4y^2\)

\(=\left(x^2-4xy+4y^2\right)-16\)

\(=\left(x-2y\right)^2-4^2\)

\(=\left(x-2y-4\right)\left(x-2y+4\right)\)

b,\(4x^2+4x-3\)

\(=4x^2-2x+6x-3\)

\(=\left(4x^2-2x\right)+\left(6x-3\right)\)

\(=2x\left(2x-1\right)+3\left(2x-1\right)\)

\(=\left(2x+3\right)\left(2x-1\right)\)

c,\(x^2-x-12\)

\(=x^2-4x+3x-12\)

\(=\left(x^2+3x\right)-\left(4x-12\right)\)

\(=x\left(x+3\right)-4\left(x+3\right)\)

\(=\left(x-4\right)\left(x+3\right)\)

26 tháng 8 2020

Bài làm:

1) Ta có: \(2x^2+5xy+2y^2\)

\(=\left(2x^2+4xy\right)+\left(xy+2y^2\right)\)

\(=2x\left(x+2y\right)+y\left(x+2y\right)\)

\(=\left(2x+y\right)\left(x+2y\right)\)

2) Ta có: \(2x^2+2xy-4y^2\)

\(=\left(2x^2-2xy\right)+\left(4xy-4y^2\right)\)

\(=2x\left(x-y\right)+4y\left(x-y\right)\)

\(=2\left(x+2y\right)\left(x-y\right)\)

26 tháng 8 2020

\(1)2x^2+5xy+2y^2=2x^2+4xy+xy+2y^2=\left(2x^2+4xy\right)+\left(xy+2y^2\right)=2x\left(x+2y\right)+y\left(x+2y\right)=\left(2x+y\right)\left(x+2y\right)\)\(2)2x^2+2xy-4y^2=2x^2+4xy-2xy-4y^2=\left(2x^2-2xy\right)+\left(4xy-4y^2\right)=2x\left(x-y\right)+4y\left(x-y\right)=\left(2x+4y\right)\left(x-y\right)\)