K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2018

\(x^2-2xy+y^2+4x-4y-5\)

\(=\left(x-y\right)^2+4\left(x-y\right)+4-9\)

\(=\left(x-y+2\right)^2-9\)

\(=\left(x-y+2+3\right)\left(x-y+2-3\right)\)

\(=\left(x-y+5\right)\left(x-y-1\right)\)

7 tháng 1 2018

a, = (x^2-2xy+y^2)+(4x-4y)-5

    = (x-y)^2+4.(x-y)-5

    = [(x-y)^2+4.(x-y)+4]-9

    = (x-y+2)^2-9

    = (x-y+2-3).(x-y+2+3)

    = (x-y-1).(x-y+5)

b, Xét : A = n^3+n+2 = (n^3+n)+2 = n.(n^2+1)+2

Nếu n chẵn => n.(n^2+1) chia hết cho 2 => A chia hết cho 2

Nếu n lẻ => n^2 lẻ => n^2+1 chẵn => n.(n^2+1) chia hết cho 2 => A chia hết cho 2

Vậy A chia hết cho 2 với mọi n thuộc N sao

Mà n thuộc N sao nên n.(n^2+1)+2 > 2

=> A là hợp số hay n^3+n+2 là hợp số

=> ĐPCM

Tk mk nha

20 tháng 10 2017

x2 + 4x – 2xy – 4y + y2 = (x2-2xy+ y2) + (4x – 4y) → bạn Việt dùng phương pháp nhóm hạng tử

= (x - y)2 + 4(x – y) → bạn Việt dùng phương pháp dùng hằng đẳng thức và đặt nhân tử chung

= (x – y)(x – y + 4) → bạn Việt dùng phương pháp đặt nhân tử chung

8 tháng 8 2018

23 tháng 1 2022

x^2+4x-2xy-4y+y^2=(x^2-2xy+y^2)+(4x-4y)

                               =(x-y)^2+4(x-y)

                               =(x-y)(x-y+4)

12 tháng 1 2017

15 tháng 1 2018

1. = [(x^2-2xy+y^2)+2.(x-y).2+4] - 9

    = (x-y+2)^2-9

    = (x-y+2-3).(x-y+2+3) = (x-y-1).(x-y+5)

2. Có : n^3+n+2 = (n^3+1)+(n+1) = (n+1).(n^2-n+1+1) = (n+1).(n^2-n+2)

Nếu n lẻ => n+1 chia hết cho 2 => n^3+n+2 chia hết cho 2

Mà n^3+n+2 > 2 => n^3+n+2 là hợp sô

Nếu n chẵn thì n^2 chia hết cho 2 => n^2-n+2 chia hết cho 2 => n^3+n+2 chia hết cho 2

Mà n^3+n+2 > 2 = >n^3+n+2 là hợp số

Tk mk nha

31 tháng 7 2021

a) x3+4x-5 = x3-x2+x2+4x-5=(x3-x2)+(x2-x)+(5x-5)=x2(x-1)+x(x-1)+5(x-1)=(x2+x+5)(x-1)

b) x3-3x2+4=x3-2x2-x2+4=(x3-2x2)-(x2-4)=x2(x-2)-(x-2)(x+2)=(x2-x+2)(x-2)

c) x3+2x2+3x+2=x3+x2+x2+x+2x+2=(x3+x2)+(x2+x)+(2x+2)=x2(x+1)+x(x+1)+2(x+1)=(x2+x+2)(x+1)

d) bạn xem lại đề đúng ko

e) (x2+3x)2-2(x2+3x)-8=x4+6x3+9x2-2x2-6x-8=x4+6x3+7x2-6x-8=x4-x3+7x3-7x2+14x2-14x+8x-8=(x4-x3)+(7x3-7x2)+(14x2-14x)+(8x-8)=x3(x-1)+7x2(x-1)+14x(x-1)+8(x-1)=(x3+7x2+14x+8)(x-1)=(x3+x2+6x2+6x+8x+8)(x-1)=\(\left[\left(x^3+x^2\right)+\left(6x^2+6x\right)+\left(8x+8\right)\right]\left(x-1\right)\)\(=\left[x^2\left(x+1\right)+6x\left(x+1\right)+8\left(x+1\right)\right]\left(x-1\right)\)\(=\left(x^2+6x+8\right)\left(x+1\right)\left(x-1\right)\)\(=\left(x^2+2x+4x+8\right)\left(x+1\right)\left(x-1\right)\)\(=\left[\left(x^2+2x\right)+\left(4x+8\right)\right]\left(x+1\right)\left(x-1\right)\)\(=\left[x\left(x+2\right)+4\left(x+2\right)\right]\left(x+1\right)\left(x-1\right)\)=\(\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x+4\right)\)

f) (x2+4x+10)2-7(x2+4x+11)+7=(x2+4x+10)2-\(\left[7\left(x^2+4x+11\right)-7\right]\)\(=\left(x^2+4x+10\right)^2-7\left(x^2+4x+10\right)\)\(=\left(x^2+4x+10\right)\left(x^2+4x+3\right)\)

a) Ta có: \(x^3+4x-5\)

\(=x^3-x+5x-5\)

\(=x\left(x-1\right)\left(x+1\right)+5\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+x+5\right)\)

b) Ta có: \(x^3-3x^2+4\)

\(=x^3+x^2-4x^2+4\)

\(=x^2\left(x+1\right)-4\left(x-1\right)\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-4x+4\right)\)

\(=\left(x+1\right)\cdot\left(x-2\right)^2\)

c) Ta có: \(x^3+2x^2+3x+2\)

\(=x^3+x^2+x^2+x+2x+2\)

\(=x^2\left(x+1\right)+x\left(x+1\right)+2\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+x+2\right)\)

d) Ta có: \(x^2+2xy+y^2+2x+2y-3\)

\(=\left(x+y\right)^2+2\left(x+y\right)-3\)

\(=\left(x+y\right)^2+3\left(x+y\right)-\left(x+y\right)-3\)

\(=\left(x+y\right)\left(x+y+3\right)-\left(x+y+3\right)\)

\(=\left(x+y+3\right)\left(x+y-1\right)\)

28 tháng 12 2021

\(a,3x^3y-12xy=3xy\left(x^2-4\right)=3xy\left(x-2\right)\left(x+2\right)\\ b,x^2-4x+4y-y^2=\left(x^2-y^2\right)-\left(4x-4y\right)=\left(x-y\right)\left(x+y\right)-4\left(x-y\right)=\left(x-y\right)\left(x+y-4\right)\)

31 tháng 7 2017

26 tháng 10 2021

a: \(=\left(3-x\right)\left(x+1\right)\)

b: \(=3x\left(x-y\right)-5\left(x-y\right)\)

=(x-y)(3x-5)

c: \(=x\left(x-y\right)-10\left(x-y\right)\)

\(=\left(x-y\right)\left(x-10\right)\)

26 tháng 10 2021

a) \(=x\left(3-x\right)+\left(3-x\right)=\left(3-x\right)\left(x+3\right)\)

b) \(=3x\left(x-y\right)-5\left(x-y\right)=\left(x-y\right)\left(3x-5\right)\)

c) \(=x\left(x-y\right)-10\left(x-y\right)=\left(x-y\right)\left(x-10\right)\)

d) \(=\left(x+y\right)^2-16=\left(x+y-4\right)\left(x+y+4\right)\)

e) \(=\left(x-y\right)\left(x+y\right)-4\left(x+y\right)=\left(x+y\right)\left(x-y-4\right)\)

f) \(=9-\left(4x^2-4xy+y^2\right)=9-\left(2x-y\right)^2=\left(3-2x+y\right)\left(3+2x-y\right)\)

g) \(=y\left(y^2-2xy+x^2-y\right)\)

h) \(=x^2\left(x-3\right)-4\left(x-3\right)=\left(x-3\right)\left(x^2-4\right)=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)

i) \(=x\left(x-y\right)+\left(x-y\right)\left(x+y\right)=\left(x-y\right)\left(2x+y\right)\)

8 tháng 9 2023

a) \(x^2-y^2-3x+3y\)

\(=\left(x-y\right)\left(x+y\right)-3\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y-3\right)\)

b) \(2x+2y-x^2+y^2\)

\(=2\left(x+y\right)-\left(x^2-y^2\right)\)

\(=2\left(x+y\right)-\left(x-y\right)\left(x+y\right)\)

\(=\left(x+y\right)\left(2-x+y\right)\)

c) \(x^2-16+y^2+2xy\)

\(=x^2+y^2+2xy-16\)

\(=\left(x+y\right)^2-16\)

\(=\left(x+y+4\right)\left(x+y-4\right)\)

8 tháng 9 2023

a) \(x^2-y^2-3x+3y\)

\(=\left(ax+y\right)\left(ax-y\right)-3.\left(x-y\right)\)

b) \(2x+2y-x^2+y^2\)

\(=2\left(x+y\right)-\left(x+y\right)\left(x-y\right)\)

c) \(x^2-16+y^2+2xy\)

\(=\left(x+y\right)\left(x-y\right)+2xy-16\)