K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2018

\(x^2-2xy+y^2+4x-4y-5\)

\(=\left(x-y\right)^2+4\left(x-y\right)-5=\left(x-y\right)^2+4\left(x-y\right)^2+4-9\)

\(=\left(x-y+2\right)^2-3^2=\left(x-y+5\right)\left(x-y-1\right)\)

9 tháng 8 2019

=4(x-y) +(x-y)^2 =(x-y)(x-y+4)

9 tháng 8 2019

TL:

\(4x-4y+x^2-2xy+y^2\)

\(=4\left(x-y\right)+\left(x-y\right)^2\) 

\(=\left(4+x-y\right)\left(x-y\right)\)

3 tháng 7 2018

Ta có: \(x^2+y^2+2xy+x+y-6\)

\(=\left(x+y\right)^2+x+y-6\)

\(=\left(x+y\right)^2+x+y-9+3\)

\(=\left[\left(x+y\right)^2-3^2\right]+\left(x+y+3\right)\)

\(=\left(x+y-3\right)\left(x+y+3\right)+\left(x+y+3\right)\)

\(=\left(x+y+3\right)\left(x+y-2\right)\)

18 tháng 11 2018

ta có : x2 + y2 + 2xy + x + y - 6

= ( x + y ) 2 + x + y - 6

= ( x + y ) 2 + x + y - 9 + 3 

=[ ( x + y )2 - 32 ] + ( x + y + 3 )

= ( x + y - 3 ) ( x + y + 3 ) + ( x + y + 3 )

= ( x + y + 3 ) ( x + y - 2)

x2-2xy =x(x-2y)

Cái này giúp gì vậy ????

:)))

11 tháng 7 2015

đề sai bét            

 

 

NV
14 tháng 11 2021

\(=\left(x^2-6x+9\right)-4y^2\)

\(=\left(x-3\right)^2-\left(2y\right)^2\)

\(=\left(x-3-2y\right)\left(x-3+2y\right)\)

8 tháng 10 2022

= ( x^2 - 4y^2 ) + ( 9 - 6x)

= [ x^2 - (2y)^2 ] + 3( 3 - 2x )

= (x - 2y)(x + 2y)+ 3(3 - 2x)

\(5-7x^2=\left(\sqrt{5}\right)^2-\left(x\sqrt{7}\right)^2\)

\(=\left(\sqrt{5}-x\sqrt{7}\right)\left(\sqrt{5}+x\sqrt{7}\right)\)

\(3+4x=\left(\sqrt{3}\right)^2-\left(2\sqrt{x}\right)^2\) ( do x<0 )

\(=\left(\sqrt{3}-2\sqrt{x}\right)\left(3+2\sqrt{x}\right)\)

NV
23 tháng 10 2021

a.

\(2x^3-x^2y+x^2+y^2-2xy-y=0\)

\(\Leftrightarrow x^2\left(2x-y+1\right)-y\left(2x-y+1\right)=0\)

\(\Leftrightarrow\left(x^2-y\right)\left(2x-y+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-y=0\\2x-y+1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=x^2\\y=2x+1\end{matrix}\right.\)

Thế vào pt đầu:

\(\left[{}\begin{matrix}x^3+x-2=0\\x\left(2x+1\right)+x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)\left(x^2+x+2\right)=0\\x^2+x-1=0\end{matrix}\right.\)

\(\Leftrightarrow...\)

 

NV
23 tháng 10 2021

b.

\(x^2-2xy+x=-y\)

Thế vào \(y^2\) ở pt dưới:

\(x^2\left(x^2-4y+3\right)+\left(x^2-2xy+x\right)^2=0\)

\(\Leftrightarrow x^2\left(x^2-4y+3\right)+x^2\left(x-2y+1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\Rightarrow y=0\\x^2-4y+3+\left(x-2y+1\right)^2=0\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2x^2-4xy+2x+4y^2-8y+4=0\)

\(\Leftrightarrow2\left(x^2-2xy+x\right)+4y^2-8y+4=0\)

\(\Leftrightarrow-2y+4y^2-8y+4=0\)

\(\Leftrightarrow...\)