Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+x-20\)
\(=x^2+5x-4x-20\)
\(=x\left(x+5\right)-4\left(x+5\right)\)
\(=\left(x-4\right)\left(x+5\right)\)
\(1,\\ 1,=15\left(x+y\right)\\ 2,=4\left(2x-3y\right)\\ 3,=x\left(y-1\right)\\ 4,=2x\left(2x-3\right)\\ 2,\\ 1,=\left(x+y\right)\left(2-5a\right)\\ 2,=\left(x-5\right)\left(a^2-3\right)\\ 3,=\left(a-b\right)\left(4x+6xy\right)=2x\left(2+3y\right)\left(a-b\right)\\ 4,=\left(x-1\right)\left(3x+5\right)\\ 3,\\ A=13\left(87+12+1\right)=13\cdot100=1300\\ B=\left(x-3\right)\left(2x+y\right)=\left(13-3\right)\left(26+4\right)=10\cdot30=300\\ 4,\\ 1,\Rightarrow\left(x-5\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\\ 2,\Rightarrow\left(x-7\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ 3,\Rightarrow\left(3x-1\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=4\end{matrix}\right.\\ 4,\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
Đặt \(x^2+3x+1=t\)
\(\Rightarrow\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6=t.\left(t+1\right)-6\)
\(=t^2+t-6=\left(t^2-2t\right)+\left(3t-6\right)\)
\(=t\left(t-2\right)+3\left(t-2\right)=\left(t-2\right)\left(t+3\right)\)
\(=\left(x^2+3x+1-2\right)\left(x^2+3x+1+3\right)\)
\(=\left(x^2+3x-1\right)\left(x^2+3x+4\right)\)
\(A=\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6\)
Đặt \(x^2+3x+1=a\)ta có :
\(a\left(a+1\right)-6\)
\(=a^2+a-6\)
\(=a^2+6a-a-6\)
\(=\left(a^2+6a\right)-\left(a+6\right)\)
\(=a\left(a+6\right)-\left(a+6\right)\)
\(=\left(a+6\right)\left(a-1\right)\)
Thay \(a=x^2+3x+1\)vào A ta có :
\(A=\left(x^2+3x+1+6\right)\left(x^2+3x+1-1\right)\)
\(=\left(x^2+3x+7\right)\left(x^2+3x\right)\)
bạn học toán thầy tên Thắng à? Bài i chang bài mik đây ^v^ Tên bạn cx quen lắm
\(\Rightarrow\left(x^2+2x\right)^2+9\left(x^2+2x\right)+20=\left(x^2+2x\right)^2+4\left(x^2+2x\right)+5\cdot\left(x^2+2x\right)+20=\left(x^2+2x\right)\left(x^2+2x+4\right)+5\left(x^2+2x+4\right)=\left(x^2+2x+4\right)\left(x^2+2x+5\right)\)
\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)