K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2018

m^2(n-p) + n^2(p-m) + p^2(m-n)

= m2n-m2p +n2p-n2m+p2(m-n)

= mn(m-n) -p(m2-n2)+p2(m-n)

= mn(m-n) -p(m-n)(m+n)+p2(m-n)

=(m-n)(mn-pm-pn+p2)

=(m-n)[m(n-p)-p(n-p)]

=(m-n)(m-p)(n-p)

23 tháng 10 2021

Bài 4: 

Ta có: \(\left(x^3-x^2\right)-4x^2+8x-4=0\)

\(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

24 tháng 10 2021

a: \(\left(xy+ab\right)^2+\left(bx-ay\right)^2\)

\(=x^2y^2+a^2b^2+x^2b^2+a^2y^2\)

\(=x^2\left(b^2+y^2\right)+a^2\left(b^2+y^2\right)\)

\(=\left(b^2+y^2\right)\left(x^2+a^2\right)\)

31 tháng 7 2019

\(m^2-16+n^2-2mn\)

\(=n^2-2mn+m^2-16\)

\(=\left(n-m\right)^2-16\)

\(=\left(n-m-4\right)\left(n-m+4\right)\)

31 tháng 7 2019

m2 - 16 + n2 - 2mn

= m2 - 2mn + n2 - 16

= (m - n)2 - 42

= (m - n - 4)(m - n + 4)

11 tháng 12 2019

Ta có: \(m^2+m+2=m^2+2m-m+2=m\left(m+2\right)-\left(m+2\right)=\left(m+2\right)\left(m-1\right)\)

a: \(x^3z+x^2yz-x^2z^2-xyz^2\)

\(=x^2z\left(x+y\right)-xz^2\left(x+y\right)\)

\(=xz\left(x+y\right)\left(x-z\right)\)

a: Ta có: \(m^2+2mn+n^2-p^2+2pq+q^2\)

\(=\left(m+n\right)^2-\left(p-q\right)^2\)

\(=\left(m+n-p+q\right)\left(m+n+p-q\right)\)

AH
Akai Haruma
Giáo viên
30 tháng 6

Lời giải:

$N=p^{m+2}q-pq^{m+3}-p^{m+3}q^{n+4}$

$=pq(p^{m+1}-q^{m+2}-p^{m+2}q^{n+3})$

17 tháng 7 2017

(x^m+2)+(x^m) = 2xm+2 = 2(xm+1)

(x^x+1)-(x^x)-1 = xx+1-xx-1 = 0

(m^4)-(n^4) = (m2)2-(n2)2 = (m2-n2)(m2+n2)

6 tháng 12 2021

\(=m^2-\left(n-2\right)^2=\left(m-n+2\right)\left(m+n-2\right)\)