Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/Dùng hằng đẳng thức A2-B2=(A+B)(A-B) phân tích được ngay
\(\left(x-y+4\right)^2-\left(2x+3y-1\right)^2\)
\(=\left(x-y+4+2x+3y-1\right)\left(x-y+4-2x-3y+1\right)\)
=\(\left(3x-2y+3\right)\left(4-x-4y\right)\)
b/Chắc chỉ phân tích hằng đẳng thức (A-B)2=A2-2ab+B2
\(49\left(y-4\right)^2-9y^2-3y-36=49y^2-392y+784-9y^2-3y-36\)
\(=40y^2-395y+748\)
Mình dùng biệt thức cho ra nghiệm vô tỉ, không biết cho phải tại mình tính sai hay đề thiếu nữa
c/Khai triển biểu thức ban đầu ta được
\(x\left(x-y\right)+y\left(y-x\right)=x^2-xy+y^2-xy=x^2-2xy+y^2=\left(x-y\right)^2\)
a) \(x^3+y^3+z^3-3xyz=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2+2xy-xz-yz\right)-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)
b) \(49\left(y-4\right)^2-9y^2-36y-36\)
\(=49\left(y-4\right)^2-\left(3y+6\right)^2\)
\(=\left[7\left(y-4\right)-\left(3y+6\right)\right]\left[7\left(y-4\right)+\left(3y+6\right)\right]\)
\(=\left(4y-34\right)\left(10y-22\right)=4\left(2y-17\right)\left(5y-11\right)\)
\(49.\left(y-4\right)^2-9y^2-36y-36\)
\(=7^2\left(y-4\right)^2-\left(9y^2+36y+36\right)\)
\(=\left(7y-28\right)^2-\left(3y+6\right)^2\)
\(=\left(7y-28+3y+6\right).\left(7y-28-3y-6\right)\)
\(=\left(10y-22\right).\left(4y-34\right)\)
\(=4.\left(5y-11\right).\left(2y-17\right)\)
\(49\left(y-4\right)^2-9y^2-36y-36\)
\(=\) \(4\left(2y-17\right)\left(5y-11\right)\)
Bài 2:
1: \(\left(2x-1\right)^2-4\left(2x-1\right)=0\)
=>\(\left(2x-1\right)\left(2x-1-4\right)=0\)
=>(2x-1)(2x-5)=0
=>\(\left[{}\begin{matrix}2x-1=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{5}{2}\end{matrix}\right.\)
2: \(9x^3-x=0\)
=>\(x\left(9x^2-1\right)=0\)
=>x(3x-1)(3x+1)=0
=>\(\left[{}\begin{matrix}x=0\\3x-1=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)
3: \(\left(3-2x\right)^2-2\left(2x-3\right)=0\)
=>\(\left(2x-3\right)^2-2\left(2x-3\right)=0\)
=>(2x-3)(2x-3-2)=0
=>(2x-3)(2x-5)=0
=>\(\left[{}\begin{matrix}2x-3=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{5}{2}\end{matrix}\right.\)
4: \(\left(2x-5\right)\left(x+5\right)-10x+25=0\)
=>\(2x^2+10x-5x-25-10x+25=0\)
=>\(2x^2-5x=0\)
=>\(x\left(2x-5\right)=0\)
=>\(\left[{}\begin{matrix}x=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{5}{2}\end{matrix}\right.\)
Bài 1:
1: \(3x^3y^2-6xy\)
\(=3xy\cdot x^2y-3xy\cdot2\)
\(=3xy\left(x^2y-2\right)\)
2: \(\left(x-2y\right)\left(x+3y\right)-2\left(x-2y\right)\)
\(=\left(x-2y\right)\cdot\left(x+3y\right)-2\cdot\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x+3y-2\right)\)
3: \(\left(3x-1\right)\left(x-2y\right)-5x\left(2y-x\right)\)
\(=\left(3x-1\right)\left(x-2y\right)+5x\left(x-2y\right)\)
\(=(x-2y)(3x-1+5x)\)
\(=\left(x-2y\right)\left(8x-1\right)\)
4: \(x^2-y^2-6y-9\)
\(=x^2-\left(y^2+6y+9\right)\)
\(=x^2-\left(y+3\right)^2\)
\(=\left(x-y-3\right)\left(x+y+3\right)\)
5: \(\left(3x-y\right)^2-4y^2\)
\(=\left(3x-y\right)^2-\left(2y\right)^2\)
\(=\left(3x-y-2y\right)\left(3x-y+2y\right)\)
\(=\left(3x-3y\right)\left(3x+y\right)\)
\(=3\left(x-y\right)\left(3x+y\right)\)
6: \(4x^2-9y^2-4x+1\)
\(=\left(4x^2-4x+1\right)-9y^2\)
\(=\left(2x-1\right)^2-\left(3y\right)^2\)
\(=\left(2x-1-3y\right)\left(2x-1+3y\right)\)
8: \(x^2y-xy^2-2x+2y\)
\(=xy\left(x-y\right)-2\left(x-y\right)\)
\(=\left(x-y\right)\left(xy-2\right)\)
9: \(x^2-y^2-2x+2y\)
\(=\left(x^2-y^2\right)-\left(2x-2y\right)\)
\(=\left(x-y\right)\left(x+y\right)-2\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-2\right)\)
a. \(x^2-y^2=\left(x-y\right)\left(x+y\right)\)
b. \(x^2-6xy+9y^2-36=\left(x-3y\right)^2-6^2=\left(x-3y-6\right)\left(x-3y+6\right)\)
a: \(x^2-y^2=\left(x-y\right)\left(x+y\right)\)
b: \(x^2-6xy+9y^2-36=\left(x-3y\right)^2-6^2=\left(x-3y-6\right)\left(x-3y+6\right)\)
\(49\left(y-4\right)^2-9y^2-36y-36\)
\(=\left[7\left(y-4\right)\right]^2-\left[\left(3y\right)^2+2.3y.6+6^2\right]\)
\(=\left(7y-28\right)^2-\left(3y+6\right)^2\)
\(=\left(7y-28-3y-6\right)\left(7y-28+3y+6\right)=\left(4y-34\right)\left(10y-22\right)=4\left(2y-17\right)\left(5y-11\right)\)
\(49\left(y-4\right)^2-9y^2-36y-36=49\left(y-4\right)^2-9\left(y^2+4y+4\right)\)\(=\left[7\left(y-4\right)\right]^2-\left[3\left(y+4\right)\right]^2=\left(7y-28-3y-12\right)\left(7y-28+3y+12\right)\)\(=\left(4y-40\right)\left(10y-16\right)=4\left(y-20\right)\left(5y-8\right)\)