K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

`a, 4a^2 + 4a + 1 = (2a+1)^2`

`b, -3x^2 + 6xy - 3y^2`

` = -3(x-y)^2`

`c, (x+y)^2 - 2(x+y)z + z^2`

`= (x+y-z)^2`

8 tháng 8 2018

1) \(x^2-2xy+y^2-xz+yz\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)-\left(xz-yz\right)\)

\(\Leftrightarrow\left(x-y\right)^2-z\left(x-y\right)\)

\(\Leftrightarrow\left(x-y\right)\left(x-y-z\right)\)

2)\(x^2-y^2-x+y\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)-\left(x-y\right)\)

\(\Leftrightarrow\left(x-y\right)\left(x+y+1\right)\)

8 tháng 8 2018

\(a,x^2-2xy+y^2-xz+yz\)

\(=\left(x-y\right)^2-z\left(x-y\right)\)

\(=\left(x-y\right)\left(x-y-z\right)\)

\(b,x^2-y^2-x+y\)

\(=\left(x-y\right)\left(x+y\right)-\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y-1\right)\)

22 tháng 7 2023

a) \(x^2-xy+x-y\)

\(=\left(x^2+x\right)-\left(xy+y\right)\)

\(=x\left(x+1\right)-y\left(x+1\right)\)

\(=\left(x+1\right)\left(x-y\right)\)

b) \(x^2+2xy-4x-8y\)

\(=x\left(x+2y\right)-4\left(x+2y\right)\)

\(\left(x-4\right)\left(x+2y\right)\)

c) \(x^3-x^2-x+1\)

\(=x^2\left(x-1\right)-\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2-1\right)\)

\(=\left(x-1\right)^2\left(x+1\right)\)

NV
16 tháng 7 2021

a.

\(=\left(x+1\right)^3-\left(3z\right)^3\)

\(=\left(x+1+3z\right)\left[\left(x+1\right)^2+3z\left(x+1\right)+9z^2\right]\)

\(=\left(x+3z+1\right)\left(x^2+2x+1+3zx+3z+9z^2\right)\)

b.

\(=\left(x-y\right)^2-z\left(x-y\right)\)

\(=\left(x-y\right)\left(x-y-z\right)\)

c.

\(=x^4-1+4x^2-4\)

\(=\left(x^2-1\right)\left(x^2+1\right)+4\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x^2+5\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x^2+5\right)\)

a) Ta có: \(x^3+3x^2+3x+1-27z^3\)

\(=\left(x+1\right)^3-\left(3z\right)^3\)

\(=\left(x+1-3z\right)\left(x^2+2x+1+3xz+3z+9z^2\right)\)

b) Ta có: \(x^2-2xy+y^2-zx+yz\)

\(=\left(x-y\right)^2-z\left(x-y\right)\)

\(=\left(x-y\right)\left(x-y-z\right)\)

c) Ta có: \(x^4+4x^2-5\)

\(=x^4+4x^2+4-9\)

\(=\left(x^2+2\right)^2-3^2\)

\(=\left(x^2-1\right)\left(x^2+5\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x^2+5\right)\)

`a, 4x^3 - 16x = 4x(x^2-4) = 4x(x-2)(x+2)`

`b, x^4 - y^4 = (x^2-y^2)(x^2+y^2) = (x-y)(x+y)(x^2+y^2)`

`c, xy^2 + x^2y + 1/4y^3`

`= y(xy + x^2 + 1/4y^2)`

`d, x^2 + 2x - y^2 + 1 = (x+1)^2 - y^2`

`= (x+1+y)(x+1-y)`

`a, P = 2x(3 - x^2)`

`b, Q = 5x^2(x-3y)`

`c, R = xy(3x^2y^2 - 6y^2z + 1)`

22 tháng 7 2023

a) \(P=6x-2x^3\)

\(P=2x\left(3+x^2\right)\)

b) \(Q=5x^3-15x^2y\)

\(Q=5x^2\left(x-3y\right)\)

c) \(R=3x^3y^3-6xy^3z+xy\)

\(R=xy\left(3x^2y^2-6y^2z+1\right)\)

`a, 9x^2 - 16 = (3x+4)(3x-4)`

`b, 4x^2 - 12xy + 9y^2 = (2x-3y)^2`

`c, t^3-8 = (t-2)(t^2 - 2t + 4)`

`d, 2ax^3y^3 + 2a = 2a(x^3y^3 + 1) = 2a(xy+1)(x^2y^2 - xy + 1)`

22 tháng 7 2023

a) \(\left(9x^2-16\right)=\left(3x-4\right)\left(3x+4\right)\)

b) \(4x^2-12xy+9y^2=\left(2x-3y\right)^2\)

c) \(t^3-8=\left(t-2\right)\left(t^2+2t+4\right)\)

d) \(2ax^3y^3+2a=2a\left(x^3y^3+1\right)\)

a: Ta có: \(2\left(x-1\right)^3-5\left(x-1\right)^2-\left(x-1\right)\)

\(=\left(x-1\right)\left[2\left(x-1\right)^2-5\left(x-1\right)-1\right]\)

\(=\left(x-1\right)\left(2x^2-4x+2-5x+5-1\right)\)

\(=\left(x-1\right)\left(2x^2-9x+6\right)\)

b: Ta có: \(x\left(y-x\right)^3-y\left(x-y\right)^2+xy\left(x-y\right)\)

\(=-x\left(x-y\right)^3-y\left(x-y\right)^2+xy\left(x-y\right)\)

\(=\left(x-y\right)\left[-x\left(x-y\right)^2-y\left(x-y\right)+xy\right]\)

\(=\left(x-y\right)\left[-x^3+2x^2y-xy^2-xy+y^2+xy\right]\)

\(=\left(x-y\right)\left(-x^3+2x^2y-xy^2+y^2\right)\)

30 tháng 8 2021

a) \(2\left(x-1\right)^3-5\left(x-1\right)^2-\left(x-1\right)=\left(x-1\right)\left[2\left(x-1\right)^2-5\left(x-1\right)-1\right]=\left(x-1\right)\left(2x^2-4x+2-5x+5-1\right)=\left(x-1\right)\left(2x^2-9x+6\right)\)

b) \(x\left(y-x\right)^3-y\left(x-y\right)^2+xy\left(x-y\right)=\left(x-y\right)\left[-x\left(x-y\right)^2-y\left(x-y\right)+xy\right]=\left(x-y\right)\left(-x^3+2x^2y-xy^2-xy+y^2+xy\right)=\left(x-y\right)\left(-x^3+y^2+2x^2y-xy^2\right)\)

c) \(xy\left(x+y\right)-2x-2y=xy\left(x+y\right)-2\left(x+y\right)=\left(x+y\right)\left(xy-2\right)\)

d) \(x\left(x+y\right)^2-y\left(x+y\right)^2+y^2\left(x-y\right)=\left(x+y\right)^2\left(x-y\right)+y^2\left(x-y\right)=\left(x-y\right)\left(x^2+2xy+y^2+y^2\right)=\left(x-y\right)\left(x^2+2y^2+2xy\right)\)

8 tháng 10 2016

ừm ừm....nhonhung

8 tháng 10 2016

làm được ko